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Background

We will use these notes as a guide to what will be covered in the Microeconometrics
coures in the Master of Economics at the University of Chile. We will work through
the notes in class and undertake a series of exercises on computer to examine various
techniques. These notes and class discussion should act to guide your study for the
end of year exam.

Along with each section of the notes, a list of suggested and required reading is
provided. Required reading should act as a complement to your study of these notes;
feel free to choose the reference which you prefer from the list of required readings
where two options are listed. I will point you to any particularly relevant sections in
class if it is only present in one of these. You are not expected to read all references
listed in suggested readings. These are chosen as an illustration of the concepts taught
and how these methods are actually used in the applied economics literature. At var­
ious points of the term you will be expected to give a brief presentation discussing a
paper chosen from the suggested reading list, or other papers which you would like to
propose (subject to confirmation with the professor). Readings like this can also be
extremely useful as you move ahead with your own research, and in eventually writing
up your thesis.
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Chapter 1

Econometrics in Parallel Universes

1.1 An Introduction to Treatment Effects and the Po­
tential Outcome Framework

Required Readings
Imbens and Wooldridge (2009): Sections 1­3.1 and 5.1
Angrist and Pischke (2009): Chapters 1­2

The treatment effects literature focuses on how to causally interpret the effect of
some intervention (or treatment) on subsequent outcomes.

The use of treatment effects methods is frequent—in the academic literature as well
as in the work of government and international organisations. Famous examples in the
economics literature include—among many others—the effect of deworming medica­
tion on children’s cognitive outcomes, the effect of having been involved in war on
labour market earnings, the effect of microfinance receipt on small business profit,
and the effect of certain types of political leaders on outcomes in their constituencies.
The nature of the type of interventions examined using treatment effect methodologies
is very broad. They may be interventions designed explicitly by researchers (such as
those which are common in organisations like JPAL), they may be public policies such
as anti­poverty programs, they may be environmentally imposed, such as exposure to
pollution, or they may be a mixture of these, such as the PROGRESA/Oportunidades
program which is an experimentally defined public policy. However, what all treat­
ment effects methods have in common, regardless of the nature of the intervention, is a
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6 CHAPTER 1. ECONOMETRICS IN PARALLEL UNIVERSES

clear focus on identifying causal “treatment effects” by comparing a treated individual
to an appropriately defined control individual.1

This may sound slightly different to what you have considered in your studies of
econometrics so far. In previous econometrics courses, the consistent estimation of
parameters of interest has relied upon assumptions regarding individual­level unob­
servables ui, and their relationship (or lack thereof) with other variables of interest
xi. In this course however, estimation will be explicitly based on considering who is
the appropriate counterfactual to be compared to the treated individual. Fortunately,
while the way of thinking about these methods is different to what you have likely seen
so far, many of the tools and assumptions that we make will have a very natural feel
to you from earlier courses. We will once again encounter regressions, instrumental
variables, and panel data at various points in this course, however the framework will
generally explicitly refer to treatment effects based off counterfactual comparisons.

1.1.1 The Case for Parallel Universes

In the simplest sense, what treatment effectsmethods boil down to is the application
of a ‘parallel universe’ thought experiment. In order to determine the effect that receipt
of treatment has on a person, what we would really like to observe is precisely the same
individual who lives their life in two nearly identical cases. In one universe, we would
like to see what happens to the individual when they receive the treatment of interest,
and in the other universe, we’d like to see the same individual in the same context,
subject to the minor difference that they did not receive treatment. Then, without any
complicated econometrics, we could infer that the causal impact of treatment is simply
the difference between the individual’s outcomes in these two worlds.2

In slightly more formal terms, we can think of an individual i, with observed char­
acteristics xi, assigned to treatment w P t0, 1u, and with observed outcome yi. In
reality of course, we cannot run our thought experiment, as we observe only one of
the two cases: either the individual is treated, in which case w = 1, or is untreated,
with w = 0. The job for us as econometricians then is in answering the question: what

1Without loss of generality, you could replace “individual” with “firm” or some other unit of treat­
ment. For the sake simplicity, we will refer to the unit of treatment as “individuals” throughout the rest
of these notes.

2This may seem very far fetched, but social scientists have expended a lot of effort in wriggling
around the lack of an observed alternative universe. We could think, for example, of all the work
on monozygotic twins as an—admittedly flawed—real world attempt at examining individuals with
identical genetic material in parallel lives…
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would individual i have looked like if they had received treatment w1 instead? (Or, in
other words, what would have happened in the parallel universe?)

This question leads us to the Rubin Causal Model...

1.1.2 The Rubin Causal Model

TheRubin CausalModel (RCM) introduces a language that can be useful in clarify­
ing thinking to answer that question. At first glance this way of modeling the question
under study may seem very different from what you have seen so far in econometrics.
In Section 1.1.3 of these notes we will return and relate this back to the kinds of em­
pirical models with which you are already familiar. The RCM divides the evaluation
problem into two distinct parts: a set of potential outcomes for each unit observed, and
an assignment mechanism that assigns each unit to one and only one treatment at each
point in time. We will examine these in turn.

Potential Outcomes

Let Wi be a random variable for each individual i that takes a value of 1 if they
receive a particular treatment, and 0 otherwise.3 We will be interested in a measurable
outcome, Y .

For example, we may be interested in the impact of attending secondary school
on subsequent labor­market earnings. In that case, wi would take a value of unity
only for those individuals who attend secondary school, and y would be a measure of
their earnings. Examples of such analysis abound, and have even come to dominate
much of the applied, microeconomic work in development. If you open up a recent
issue of AEJ Applied Economics or AEJ Economic Policy, you will likely find many
interesting examples of problems cast in this way.

Any given individual could be associated with either treatment (in which casewi =

1) or its absence (wi = 0). The RCM defines a pair of potential outcomes, (y1i, y0i) to
these counterfactual states. So far, so good. However, there is a problem…At any point
in time, only one of these potential outcomes will actually be observed, depending on

3In fact it is not necessary—and can bemisleading—to think of the alternative to particular treatment
as the absence of any intervention. Often we will be interested in comparing outcomes under two
alternative treatments.
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the condition met in the following assignment mechanism:

yi =

$

&

%

y1i, if wi = 1

y0i, if wi = 0.
(1.1)

At this point it is worth explicitly making note that both of these outcomes together
will never exist for a given i. If we observe y1i (an individual’s outcome under treat­
ment) this precludes us from observing y0i. Conversely, observing an individual’s
outcome in the absence of treatment implies that we will never observe the same unit
under treatment. This is what Holland (1986) calls the “fundamental problem of causal
inference”: for the individuals who we observe under treatment we have to form an
estimate of what they would have looked like if they had not been treated.

The observed outcome can therefore be written in terms of the outcome in the ab­
sence of treatment, plus the interaction between the treatment effect for that individual
and the treatment dummy:

yi = y0i + (y1i ´ y0i)wi. (1.2)

(Imbens and Wooldridge, 2009, pp. 10­11) provide a useful discussion of the advan­
tages of thinking in terms of potential outcomes. Worth highlighting among these are:

1. The RCM forces the analyst to think of the causal effects of specific manip­
ulations. Questions of the ‘effect’ of fixed individual characteristics (such as
gender or race) sit less well here, or need to be carefully construed. A hard­
line view is expressed by Holland (and Rubin): “NO CAUSATIONWITHOUT
MANIPULATION” (Holland (1986), emphasis original).

2. The RCM clarifies sources of uncertainty in estimating treatment effects. Uncer­
tainty, in this case, is not simply a question of sampling variation. Access to the
entire population of observed outcomes, y, would not redress the fact that only
one potential outcome is observed for each individual unit, and so the counter­
factual outcome must still be estimated—with some uncertainty—in such cases.

The Assignment mechanism

The second component of the data­generating process in the RCM is an assign­
ment mechanism. The assignment mechanism describes the likelihood of receiving
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treatment, as a function of potential outcomes and observed covariates.

Assignment mechanisms can be features of an experimental design: notably, in­
dividuals could be randomly assigned to one treatment or another. Alternatively the
assignment mechanism may be an economic or political decision­making process. We
sometimes have a mixture of the two; for example, when we have a randomized con­
trolled trial with imperfect compliance (which will be discussed much more in section
3.1 later in this lecture series).

Thinking in terms of potential outcomes and an assignment mechanism is imme­
diately helpful in understanding when it is (and is not) appropriate to simply compare
observed outcomes among the treated and observed outcomes among the untreated as
a measure of the causal effects of a program/treatment. Note (Angrist and Pischke,
2009, p. 22) that

E[Yi|Wi = 1] ´ E[Yi|Wi = 0]
looooooooooooooooomooooooooooooooooon

Observed difference in average outcomes

= E[Y1i|Wi = 1] ´ E[Y0i|Wi = 1]
loooooooooooooooooomoooooooooooooooooon

average treatment effect on the treated

+ E[Y0i|Wi = 1] ´ E[Y0i|Wi = 0]
loooooooooooooooooomoooooooooooooooooon

selection bias

, (1.3)

by simply adding and subtracting the term in the middle (note that these two terms are
the same!).

This is quite an elegant formula, and a very elegant idea. If we consider each of
the terms on the right­hand side of equation 1.3, first:

E[Y1i|Wi = 1] ´ E[Y0i|Wi = 1].

This is our estimand of interest, and is the average causal effect of treatment on those
who received treatment. This term is capturing the average difference between what
actually happens to the treated when they were treated (E[Y1i|Wi = 1]), and what
would have happened to the treated had they not been treated (E[Y0i|Wi = 1]).

The second term refers to the bias potentially inherent in the assignment mecha­
nism:

E[Y0i|Wi = 1] ´ E[Y0i|Wi = 0].

Whatwould have happened to the treated had they not been treated (once again,E[Y0i|Wi =

1]), may be quite different to what actually happened to the untreated group in practice
(E[Y0i|Wi = 0]). It is worth asking yourself at this point if this all makes sense to you.
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In the above outcomes, what do we (as econometricians) see? What don’t we see?
What sort of assumptions will we need to make if we want to infer causality based
only on observable outcomes? We will return to discuss these assumptions in more
depth soon.

As we will see, when potential outcomes are uncorrelated with treatment status—
as is the case in a randomized trial with perfect compliance—then the selection bias
term in equation 1.3 is equal to zero. Due to randomisation, the treated and control
individuals should look no different on average, and as such, their potential outcomes
in each case should be identical. In this ideal set­up, comparison of means by treatment
status then gives the treatment effect experienced by those who received the treatment.

In general, the assignment of an individual to treatment status wi may depend on
observable characteristics, xi. It may also depend on unobserved determinants of the
potential outcomes. In this way we can, in general, have

wi = f(xi, y1i, y0i). (1.4)

This is very broad, stating that assignment can depend upon observable characteristics
(generally not a problem), but also could depend upon the potential outcomes them­
selves (which will, in general, require attention).4 As we will see in the remainder
of this course, the appropriateness of alternative estimators will hinge crucially on
whether we are willing to assume that selection is a function only of observable char­
acteristics, or whether we want to allow it to depend on unobservable characteristics
as well.

Estimands of Interest

In this general framework, we have not assumed that potential outcomes (Y0i, Y1i)

are the same across all individuals, or even that the difference between the potential
outcomes is constant across individuals. This permits alternative definitions of pro­
gram impact. For now we will focus on two:5

4As a simple example, we could consider the example of a program where the individuals who
choose to enter are those who would do the worst without the program. Using non­treated individuals
as a counterfactual in this case is clearly not appropriate, as their experience without the program is
better than what would be expected were the treatment group not to participate.

5In the following lecture, we will discuss non­compliance in more detail. We will then introduce a
third measure, the Intent­to­Treat (ITT) effect.
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• Average Treatment Effect (ATE): E[Y1 ´ Y0]

• Average Treatment Effect on the Treated (ATT): E[Y1 ´ Y0|W = 1]

The first of these, the ATE, represents the average improvement that would be
experienced by all members of the population under study, if they were all treated.
The ATT, on the other hand, is the average treatment effect actually experienced in
the sub­population of those who received treatment. Depending on the use of our
econometrics, the statistic we will be interested in will vary. For example, if we are
interested in assessing the impact of a targeted anti­poverty program, it seems unlikely
that we would be interested in the ATE in the whole population, many of whom are
not eligible for the program, and would likely prefer the ATT. On the other hand, if we
were aiming to assess the impact of a program that is planned to roll­out to the whole
population over time, the ATE is precisely what we would like to know.

Wewill sometimes (and throughout the remainder of this section) assume that treat­
ment effects are homogeneous; i.e., that they are the same throughout the population.
In this case, clearly, the ATT and ATE will be the same. The two measures of program
impact will diverge, however, when there is heterogeneity in treatment response (or
potential outcomes) across individuals, and when selection into treatment—the assign­
ment mechanism—is not independent of these potential outcomes.

To see why the ATT and ATE will often not be the same, consider analyzing the ef­
fect of obtaining secondary schooling on subsequent income. The returns to secondary
schooling will vary by individual: those with greater natural ability or connections in
the employment market may be better placed to benefit from additional schooling. If it
is also the case that those who end up receiving schooling are those with higher returns,
then the ATT will be greater than the ATE. Such concerns are central to the ‘scaling
up’ of development interventions: if the ATT and the ATE differ, then intervening to
obtain complete coverage may not yield the expected results.

1.1.3 Returning to Regressions

Thus far, the language of treatment effects may seem a bit foreign to the regression
framework to which you have become accustomed. This need not be so. In fact,
starting from a slightly more general version of the potential outcomes framework can
help to clarify the assumptions underlying regressions used for causal inference.
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Let’s begin by assuming that there are no covariates—just the observed outcome,
Y , and a treatment indicator, W . It will be helpful to write µ0, µ1 as the population
means of the potential outcomes Y0, Y1 respectively. These values are generally our
estimands of interest, and can be compared to the coefficients you have been esti­
mating in regession models throughout the whole course. Let e0i, e1i be a mean­zero,
individual­specific error term, so that we can write:

y0i = µ0 + e0i (1.5)

y1i = µ1 + e1i. (1.6)

Then, recalling equation (1.2), we can write the observed outcome as

yi = µ0 + (µ1 ´ µ0)
loooomoooon

τ

wi + e0i + (e1i ´ e0i)wi
looooooooomooooooooon

ei

. (1.7)

Thus we can see that a regression of y on w will produce a consistent estimate of the
average treatment effect only if w is uncorrelated with the compound error term, ei.
This holds when treatment assignment is uncorrelated with potential outcomes—an
assumption that we will introduce in Section 1.1.4 as unconfoundedness.

Covariates can also be accommodated in this framework. Consider a covariateXi.
For ease of exposition define x̄ as the population average of x; we can then write:

y0i = µ0 + β0(xi ´ x̄) + e0i (1.8)

y1i = µ1 + β1(xi ´ x̄) + e1i. (1.9)

Notice here that we can allow the coefficients, β, to vary according to treatment status.
This is illustrated in Figure 1.1.

The ATE is still given by µ1 ´ µ0, and we can still include x as a regressor (the
reasons for doing so are discussed in the next section). But we may now want to take
explicit care to let the relationship between x and y depend on treatment status, and to
incorporate this into our estimates of the treatment effect. This allows us to flexibly
model the situation in which β0 ‰ β1 in equations 1.8 and 1.9. There are many real­
life examples where this might be the case: for example, the effect of social networks
on earnings might be stronger among those with secondary education (a treatment of
interest) than among those without. We will return to a more extensive discussion of
heterogeneity in the lectures which follow, and particularly, section 3.1 of these notes.
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Figure 1.1: Treatment effect heterogeneity with observable characteristic x

E[y0] = 0(x x) + 0

E[y1] = 1(x x) + 1

x

y0, y1

1

0

Let us leave aside—for the moment—the issue of varying coefficients. The key
question then becomes, under what circumstances will a regression of the form above
give consistent estimates of the effect of treatmentW ? We now turn to this.

1.1.4 Identification

The simplest case in the analysis of treatment effects occurs when the following
three assumptions hold.

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA).

Potential outcomes Y0i, Y1i are independent ofWj, @j ‰ i.

This is the assumption that the treatment received by one unit does not affect the
potential outcomes of another—that is, that there are no externalities from treatment.
When SUTVA fails, the typical responses are either to change the unit of randomiza­
tion/analysis, so as to internalize the externality; or to estimate the externalities direcly.
See in particular Miguel and Kremer (2004) for a paper that grapples with such exter­
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nalities6. However, we will maintain the SUTVA assumption throughout this and the
next lecture, unless otherwise specified.

While not explicitly built into SUTVA, the importance of effects and one’s own
treatment status is something that we will want to think carefully about when consid­
ering the scope of results. Both John Henry Effects and Hawthorne Effects will lead
to a situation where we may assign to the treatment an effect which is actually due to
people realising that they are participating in a trial.

Assumption 2. Unconfoundedness

(Y0i, Y1i) KK Wi|Xi

Conditional on covariatesXi,W is independent of potential outcomes. Variations
of this assumption are also known as conditional mean independence and selection on
observables.

As suggested by equation (1.7), unconfoundedness is required for simple regres­
sion to yield an unbiased estimate of the ATT, τ . This is also evident in the decompo­
sition of equation (1.3): unconfoundedness ensures thatE[Y0i|Wi = 1] = E[Y0i|Wi =

0]. We may not always be confident that unconfoundedness holds unconditionally, but
in some cases conditioning on a set of characteristicsX can strengthen the case for the
applicability of this assumption.

It is important to note that this is a particularly strong assumption. If we are willing
to make an assumption of this type, it buys us identification under a very wide range of
settings. However, we should always ask ourselves whether we believe the assumption
in each circumstance in which we call upon it. This assumption is not dissimilar, in
magnitude or scope, to the exogeneity assumption from the Gauss­Markov theorem
that has been present in earlier econometrics courses.

Assumption 3. Overlap

0 ă Pr[Wi = 1|Xi] ă 1

The assumption of overlap implies that, across the support of X , we observe both
treated and untreated individuals. In other words, for every combination of Xi, at

6These questions are far from trivial. You may be familiar with the challenges and critiques which
arose during the so­called “WormWars” (see for example Davey et al. (2015); Hicks et al. (2015)). This
was an example where the precise issues which we are discussing in these four lectures (the consistent
estimate of treatment effects) spilled over into the popular press.



1.2. CONSTRUCTING A COUNTERFACTUAL WITH OBSERVABLES 15

least one treated and one untreated individual exists. Note this is an assumption about
the population rather than about the sample; the hazards of random sampling make it
highly likely (especially in the case of multiple and discrete regressors) that we will
not observe both treated and untreated individuals with exactly the same value of these
covariates.

Assumptions 2 and 3 are sometimes known together as the condition of “strongly
ignorable treatment assignment” (Rosenbaum and Rubin, 1983). The identification of
a conditional average treatment effect τ(x) under unconfoundedness and overlap can
be shown as follows:

τ(x) = E[Y1i ´ Y0i|Xi = x] (1.10)

= E[Y1i|Xi = x] ´ E[Y0i|Xi = x] (1.11)

= E[Y1i|Xi = x,Wi = 1] ´ E[Y0i|Xi = x,Wi = 0] (1.12)

= E[Y |Xi = x,Wi = 1] ´ E[Y |Xi = x,Wi = 0] (1.13)

Equation (1.10) is given by the definition of the average treatment effect. Equation
(1.11) follows from the linearity of the (conditional) expectations operator. Uncon­
foundedness is used to justify the move to equation (1.12): the potential outcome un­
der treatment is the same in the treated group as it is for the population as a whole,
for given covariates x, and likewise for the potential outcome under control. Equation
(1.13) highlights that these quantities can be observed by population averages.

Equation 1.12 is central for us. This is the first time that we are actually able to say
something using values observed in the real world rather than simply using theoretical
potential outcomes (or in other words, we now have an identified parameter). This
makes explicit the importance of the unconfoundedness assumption for identification
in this context.

1.2 Constructing a Counterfactual with Observables

Required Readings
Imbens and Wooldridge (2009): Sections 4 and 5 (Don’t worry about 5.2 and 5.9)
Angrist and Pischke (2009): Sections 3.2 and 3.3

Suggested Readings
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Dehejia and Wahba (2002)
Diaz and Handa (2006)
Jensen (2010)
Banerjee and Duflo (2009)
Miguel and Kremer (2004)
Baranov et al. (2020)
Heß et al. (2021)

This section could alternatively be called “estimation under unconfoundedness”.
Once we make assumptions of (conditional or unconditional) unconfoundedness, we
have a range of estimation methods at our disposal. As unconfoundedness solves the
business of the assignment mechanism by making it completely observable, all we
have left is to recover estimates of these treatment effects by using data. This is now
a technical issue, which we turn to here.

1.2.1 Unconditional unconfoundedness: Comparison of Means

The simplest case occurs when (Y1, Y0) KK W , without conditioning on any covari­
ates. Where this assumption holds, we need only compare means in the treated and
untreated groups, as already shown. The ATE can be estimated by a difference­in­
means estimator of the form:

τ̂ =
N1
ÿ

i=1

λiYi ´

N0
ÿ

i=1

λiYi, (1.14)

where N0, N1 are the number of treated and untreated individuals in the sample, re­
spectively, and where the weights in each group add up to one:

ÿ

i:Wi=1

λi = 1

ÿ

i:Wi=0

λi = 1.

A straightforward way to implement this in Stata or your favourite computer language
for econometrics is just to regress outcome y on a dummy variable for treatment status.

When will unconditional unconfoundedness hold? It is likely only to hold globally
(that is, for the entire population under study) in the case of a randomized controlled
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trial with perfect compliance. This is the reason that claims are sometimes made that
such experiments provide a ‘gold standard’ in program evaluation. Since the regres­
sion can be performed without controls, it may be less susceptible to data mining and
other forms of manipulation by the researcher, a point we turn to in the final section
of these notes.

Even in a RCT however, there are a number of important considerations, especially
when putting this into practice. Issues such as how to randomise (is it okay to just flip
a coin, for example?), testing for balance of covariates between treatment and control
groups, the use of stratified or blocked randomisation, and power calculations are all
things that come up in this context. We won’t go in to too great depth here, however
if you ever find yourself working in a situation where you are participating in an RCT,
an excellent place to start is by reading Glennerster and Takavarasha’s 2013 “Running
Randomized Evaluations: A Practical Guide”, a comprehensive applied manual with
an accompanying webpage: http://runningres.com/.

The handbook chapter of Duflo et al. (2007) also provides an extremely useful
overview, particularly focused on development economics. This also provides hands­
on discussion of the practicalities involved in implementing randomized control trials
along with some key considerations such as details related to working with partners for
implementation, the procedure of piloting projects, different methods of randomization
elements related to sampling and sample size, and data collection. We will discuss
some of these in more length later, particularly in Chapter 4 when we discuss power in
hypothesis tests. Each of these considerations has many ‘moving parts’ and is worth
reading in full. For example, when considering the way in which randomization can
take place, Duflo et al. (2007) list (i) the oversubscription method, where participants
can be chosen randomly from applicants where more applicants than spots exist, (ii)
Randomized order of phase­in, where all individuals eventually receive treatment, but
the timing is staggered, (iii) within group randomization, where certain sub­groups
in each group receive treatment, or (iv) encouragement designs, where rather than
randomizing the program itself, researchers provide random groups encouragement of
some sort to participate in a program.

While RCTs allow us to quite credibly make the unconfoundedness assumption,
such trials are not easy to implement and will not be able to answer all questions—an
issue to which we return to extensively in the all the lectures which follow. Deaton
(2009) provides a critique. For now we may note that:

• Randomized controls are expensive and time­intensive to run;

http://runningres.com/
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• The set of questions that can be investigated with randomized experiments is a
strict subset of the set of interesting questions in economics;

• Evidence from RCTs is subject to the same problems when it comes to extrapo­
lating out of the sample under study as is evidence from other study designs.

• Attrition and selection into/out of treatment and control groups pose serious
challenges for estimation.

This is something followed up in Deaton (2020), which pays particular attention to im­
portant ethical considerations behind RCTs in economics. This is not a trivial concern,
and something of central importance in research, and this paper is well­worth reading.

While experiments do very well in terms of internal validity—they identify the
treatment effect for some subpopulation within the sample—they are no guarantee
of external validity. Replication (which may provide evidence that treatment effects
are homogeneous, or vary in predictable ways with measurable characteristics) and,
ultimately, theory, are required.

Unconfoundedness will hold globally by design in RCTs. In a less controlled (by
the econometrician) setting, we may be willing to assume that unconditional uncon­
foundedness holds locally in some region. This is the basis for regression discontinuity
design, to be discussed later in the lecture series (section 3.2).

1.2.2 Regressions

Absent a RCT, unconfoundedness is unlikely to hold unconditionally. In nearly all
other cases in which we will be interested, there will be some reason why individuals
receive treatment – be it an explicitly targeted program, or individuals choosing to
participate in a program given the incentives they face. As a start, we may be able
to make the unconfoundedness assumption less stringent by conditioning on a set of
characteristics, X . By now the most familiar way of doing so is through multivariate
regression. If we are able to perfectly measure the characteristics that are correlated
with both potential outcomes and the assignment mechanism, then this problem can
be resolved with regression.

Recall the potential outcomes framework with covariates, from equations (1.8)
and (1.9). Let’s combine these seperate equations into one regression model, where
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we assume a linear functional form for the relationship between x and each of the
potential outcomes (note that this need not be the case). This leads to a regression of
the form:

yi = µ0+(µ1 ´µ0)wi+β0(xi ´ x̄)+(β1 ´β0)(xi ´ x̄)wi+e0i+(e1i ´e0i)wi. (1.15)

Often it is assumed that β0 = β1 = β, in which case this expression simplifies to:

yi = µ0 + (µ1 ´ µ0)wi + β(xi ´ x̄) + e0i + (e1i ´ e0i)wi. (1.16)

Under (conditional) unconfoundedness, E[e0i + (e1i ´ e0i)wi|Xi] = 0, so the unob­
servable does not create bias in the regression.

But this foreshadows the importance of either getting the functional form for β
exactly right, or else having the x characteristics balanced across treatment and control
groups. If covariates are not balanced, then omission of the term (β1 ´ β0)(xi ´ x̄)wi

introduces a correlation between w and the error term, biasing estimates of the ATE.

It may be tempting to conclude that it is best to err on the side of including covari­
ates X . And indeed, in many cases this will be the case. You have likely observed in
earlier econometrics courses that including irrelevant covariates in a regression does
not bias coefficients, while the omission of relevant covariates generally does. How­
ever there is an important class of covariates that should be omitted from a regression
approach: intermediate outcomes.

The logic here is simple. Suppose the treatment of interest, W affects a second
variable, so that E[X|W ] = δW , and that both X and W have direct effects on the
outcome of interest Y . In this case, if we are interested in the impact of W on Y ,
we want a total derivative—inclusive of the effect that operates through intermediate
outcome X . Conditioning on X in a regression would in this case bias (towards 0)
such an estimate.

As Angrist and Pischke (2009) point out, such intermediate outcomes may depend
both on unobserved factors that we would like to ‘purge’ from their potential con­
founding influence on the estimates, as well as a causal effect stemming from W . In
this case, the researcher faces a trade­off between two sources of bias.

As an example, imagine if we were interested in following up the well known
Miguel and Kremer (2004) worms trial to look at the effect of deworming drugs on
eventual labour market outcomes of recipients (see for example Baird et al. (2016)).
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We would quite quickly reach the question of whether we should include education as
a control. Education has large returns on the labour market, and seems like a relevant
control in a labour market returns regression. But, at the same time, any difference in
education between treatment and control may be largely due to the effect of treatment
(deworming) itself. The way we would decide to move forward is not entirely clear,
and would require careful consideration of what inclusion or exclusion of the controls
would imply for our parameter estimates.

1.2.3 Probability of Treatment, Propensity Score, and Matching

Unconfoundedness, when combined with regression, gives consistent estimates of
the ATT. But we have seen that, when conditioning on a vector of covariates X is
required for this assumption to hold, results may be sensitive to functional form. One
response is to use very flexible functional forms inX , but given the degrees of freedom
requirements this is not always practical or ideal. A common family of alternatives to
regressions of the sort described in Section 1.2.2 are based on the propensity score.

Begin by defining the propensity score, p(x) = Pr[W = 1|X = x], as the proba­
bility of being treated, conditional on characteristics x. Propensity score methods are
based on the observation that, once we assume unconfoundedness, the treatment in­
dicator and potential outcomes will be independent of one another conditional on the
propensity score Rosenbaum and Rubin (1983).

Theorem 1. Propensity score theorem

Suppose unconfoundedness holds, such that Wi KK (Y0i, Y1i)|Xi, and define the
propensity score as above. Then potential outcomes are independent of the assignment
mechanism conditional only on the propensity score: Wi KK (Y0i, Y1i)|p(Xi).

The intuition for this result comes from the observation that even without uncon­
foundedness,Wi KK Xi|p(Xi). See Angrist and Pischke (2009) for a useful discussion.
In a general sense, as the propensity score is capturing the assignment mechanism,
conditional on the propensity score, all that remains of the Rubin Causal Model is the
difference in potential outcomes between treated and untreated individuals.

Having established that we need only condition on the propensity score in order
to ensure independence of the assignment mechanism and the potential outcomes, we
have a range of estimating techniques available.
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Regression using the propensity score

Possibly the most straightforward use of the propensity score is to use it to aug­
ment a simple regression of observed outcomes on treatment status. In practice this
entails first estimating the propensity score (typically with a logit or probit),7and then
including this generated regressor in a regression of the form:

yi = τwi + ϕzp(xi) + ei (1.17)

If the relationship between the propensity score and potential outcomes is in fact
a linear one, then the inclusion of p(X) purges this regression of any contamination
between the treatment statusw and the error term (recall that the error term contains the
individual­specific variation around the population means of the potential outcomes).

At first glance, this seems to offer a pair of benefits—but these are not straightfor­
ward.

First, regression using the propensity score seems to be a solution for a degrees
of freedom problem, in that it is no longer necessary to control for a (potentially high
dimension) X in the regression on potential outcomes. However, this is not the case,
since p is a function of the full set of covariates. This is most easily seen when the
propensity score is estimated by a linear probability model, in which case the estimates
are exactly the same as those obtained by inclusion of X directly.

Second, regression using the propensity score seems to allow us to be agnostic
about the functional form relating X to potential outcomes Y0i, Y1i. Often these func­
tional forms have been the subject of long debates (for example, in the case of agricul­
tural production functions or earnings functions), whereas our interest here is simply
in the use of X to partial out any correlation between the assignment mechanism for
W and the potential outcomes. However, regression using the propensity score as in
equation (1.17) requires us to correctly specify the relationship between the propen­
sity score and the potential outcomes, an object for which theory and accumulated
evidence provide even less of a guide, while at the same time requiring us to correctly
specify the function p(X). This is partly solved by including higher­order polyno­

7In Stata, propensity scores can be estimated using the pscore command. Alternatively logit, pro­
bit (or for that matter linear probability) models can be combined with the predict post­estimation
command to generate the propensity scores for each observed unit. As of version 13 of Stata, there is a
new series of commands contained in the teffects library which includes a propensity score module
pscore.

http://www.stata-journal.com/sjpdf.html?articlenum=st0026
http://www.stata.com/help.cgi?predict
http://www.stata.com/manuals13/te.pdf
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mial functions of p, but at the expense of the parsimony that is the chief advantage
of this approach. The two estimates discussed next—weighting and matching using
the propensity score—have the advantage of allowing us to be truly agnostic about the
relationship between potential outcomes and p(X).

As a final precaution in the case that you wish to combine a propensity score esti­
mate with regression methods, it is important to note that in such an approach (as with
instrumental variables estimates when done ‘by hand’), standard errors must be cor­
rected for the presence of generated regressors. Bootstrap or other resampling methods
are often the easiest route of calculating standard errors in circumstances such as these.

Weighting by the propensity score

Under unconfoundedness, the propensity score can be used to construct weights
that provide consistent estimates of the ATE. This approach is based on the observation
that (again, under unconfoundedness)

E[Y1i] = E

[
YiWi

p(Xi)

]
(1.18)

and
E[Y0i] = E

[
Yi(1 ´ Wi)

(1 ´ p(Xi))

]
. (1.19)

To see why, note that, as discussed in Angrist and Pischke (2009, p. 82), equation 1.18
can be shown to hold as follows:

E

[
YiWi

p(Xi)

]
= E

"

E

[
YiWi

p(Xi)

]ˇ

ˇ

ˇ

ˇ

Xi

*

=
E[Yi|Wi = 1, Xi]p(Xi)

p(Xi)

= E[Y1i|Wi = 1, Xi] = E[Y1i|Xi]

and a similar process can be followed for E[Y0i] (equation 1.19). Combining these
gives an estimate of the ATE:

E[Y1i ´ Y0i] = E

[
YiWi

p(Xi)
´

Yi(1 ´ Wi)

(1 ´ p(Xi))

]
= E

[
(Wi ´ p(Xi))Yi

p(Xi)(1 ´ p(Xi))

]
(1.20)
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which can be estimated using sample estimates of p(X). This idea can be thought of
as framing the problem of analyzing treatment effects as one of non­random sampling.
Although this insight allows us to avoid making functional form assumptions about the
relationship between potential outcomes and X , it does require a consistent estimate
of the propensity score.

Matching on the propensity score

An alternative and perhaps more intuitive set of estimators are based on matching.
To begin, note that under Assumption 3, in a large enough sample it should be possible
to match treated observations with untreated observations that share the same value of
the covariate vector X . When the covariates are discrete variables, this amounts to
ensuring that we have both treated and untreated observations in all the ‘bins’ spanned
by the support ofX . However, in finite samples and in particular with many, continu­
ous regressors in X , exact matching becomes problematic: we suffer from a curse of
dimensionality.

Application of the propensity score theorem tells us that it is sufficient to match on
the basis of p(X), rather than matching on the full covariate vector X .

Figure 1.2: Propensity­score matching using nearest­neighbor matching
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Once we have established that our data—or a subset of observations—satisfy the
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requirements of common support and conditional mean independence, we can obtain
an estimate of the ATT by:

ATTM =
1

NT

ÿ

i:wi=1

(
y1,i ´

ÿ

j:wj=0

ϕ(i, j)y0,j

)
(1.21)

where tw = 1u is the set of treated individuals, tw = 0u is the set of untreated individ­
uals, and ϕ(i, j) is a weight assigned to each untreated individual—which will depend
on the particular matching method. Notice that

ř

j:wj=0 ϕ(i, j)y0,j is our estimate of
the counterfactual outcome for treated individual j.

The issue now is how to calculate the weight. There are several possibilities. Two
common approaches include:

• Nearest­neighbor matching: find, for each treated individual, the untreated in­
dividual with the most similar propensity score. ϕ(i, j) = 1 for that j, and
ϕ(i, k) = 0 for all others.

• Kernel matching: Let the weights be a function of the “distance” between i and
j, with the most weight put on observations that are close to one another, and
decreasing weight for observations farther away.

Alternative matching methods also exist, including minimizing the Mahalanobis dis­
tance and optimising both the neighbours to be used and their weights together in a
single optimisation problem. The Mahalanobis matching procedure seeks to directly
minimize a single measure of distance based on the imbalance in covariates X . Con­
sider two observations i and j with vectors of observable characteristics Xi and Xj

respectively. The Mahalanobis metric is to calculate their “distance” as:

M(Xi, Xj) =
b

(Xi ´ Xj)1S´1(Xi ´ Xj)

where S refers to the sample covariance matrix of X . A “match” can then be sought
based on the units which are closest in these measures. Note that alternative match­
ing methods can give very different answers—we will see this ourselves in the data
exercise. A limitation of propensity­score approaches is that there is relatively little
formal guidance as to the appropriate choice of matching method. Relatively recent
work from King and Nielsen (2019) points to additional concerns, specifically with
propensity score matching, with both losses in efficiency due to the removal of ob­
servations, and at times even increases in bias. In general, all told, this suggests that
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propensity score matching should be avoided as a technique for causal analysis.

Matching methods (including propensity scores) can be combined with difference
in differences (DiD) techniques. As in Gilligan and Hoddinot (2007), we could esti­
mate:

ATTDIDM =
1

NT

ÿ

iPtw=1u

y1,i,t ´ y1,i,t´1 ´
ÿ

jPtw=0u

ϕ(i, j)(y0,j ´ y0,j,t´1)

 (1.22)

which compares change in outcomes for treated individuals with a weighted sum of
changes in outcomes for comparison individuals. We will return in far more detail to
difference in differences methods in section 2 of these notes.

1.2.4 Matching methods versus regression

There is no general solution to the problem of whether (appropriately chosen)
matching or regression methods should be preferred as ways of estimating treatment
effects under conditionañ unconfoundedness—the appropriate answer will depend on
the case. Of course, in general, if a combination of methods leads to conclusions which
are broadly similar, this will give us much greater confidence in the validity of our es­
timates.

Advantages of propensity score/matching:

• Does not require functional form assumptions about the relationship between Y
and theX covariates. As such it avoids problems of extrapolation: if the support
of some X variables is very different across treated and untreated observations
in the sample, then we will be forced to extrapolate the relationship between x

and potential outcomes in order to estimate the treatment effect under regression
(to see this, consider allowing the β to vary by treatment status).

• Can potentially resolve the ‘curse of dimensionality’ in matching problems.

Disadvantages

• Shifts the problem of functional form: must correctly specify e(x) = Pr[W =

1|X = x]. Note that since most candidate estimates (probit, logit, etc) are rela­
tively similar for probabilities near 1/2, these methods may be more appealing
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when there are few observations with very high or very low predicted probabil­
ities of treatment.

• Matching on the basis of propensity score proves to be very sensitive to the
particular matching method used.

• Asymptotic standard errors under propensity score matching are higher than un­
der linear regression, even when we have the ‘true’ functional form—this is the
price of agnosticism. In small samples, however, this may be less of an issue
Angrist and Pischke (2009).

1.2.5 Some Points on Inference

In the case of regressions or comparison of mean estimators, typically inference—
the procedure allowing for the construction of standard errors, confidence intervals,
and eventually p­values—can be conducted using standard analytical formulae for
variance. However, these are generally asymptotically valid, and based on strong
assumptions such as normality of the residual terms. While these are still the most
commonly used inference procedure, and increasingly common procedure consists of
conducting “randomization inference”.

Randomization inference, originally laid out in Fisher (1925, 1935) provides an
alternative means of inference which is valid in small samples, and can be conducted
by simply taking the true data and randomly permuting (or shuffling) a treatment sta­
tus throughout observations and then re­estimating the treatment effect, before count­
ing how many times these randomly generated statistics exceed the original treatment
value.

Randomization inference follows from the idea underlying “Fisher’s exact test”
using contingency tables. Consider a case where we have 6 individuals, 3 of whom
randomly receive a treatment, and 3 of whom randomly receive a placebo (control). If
we compare the average between these two groups assuming balance, we can calcu­
late the treatment effect as the difference in means. If we wish to formally test whether
this is significantly different to zero, with 6 observations a t­test, and certainly some­
thing based upon asymptotic approximations, will likely not be appropriate. So to see
whether this treatment effect is actually something that is significantly different to zero,
one way to proceed would be to compare it to many samples where, in theory, no effect
should exist, and ask how extreme the effect is compared to these samples. The logic
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behind the exact test, and randomization inference generally, is that we can generate
such samples by randomly permuting the treatment status within the sample, holding
all outcomes fixed, and simply considering the ‘treatment effects’ in all possible re­
shuffled treatment cases. In order to calculate a p­value, we can ask how extreme the
observed real treatment effect was compared with all the possible permuted treatment
effects if the treatment status had been simply assigned at random to the same number
of observations in this group.

Table 1.1: A Simple Illustration of Randomization Inference

Permutation Treatment Control Estimate

Original (1) 34 27 29 14 18 24 11.33

2 34 27 14 29 18 24 1.33
3 34 27 18 14 29 24 4
4 34 27 24 14 18 29 8
5 34 14 29 27 18 24 2.67
6 34 18 29 14 27 24 5.33
7 34 24 29 14 18 27 9.33
8 14 27 29 34 18 24 ­2
9 18 27 29 14 34 24 0.67
10 24 27 29 14 18 34 4.67
11 34 14 18 27 29 24 ­4.67
12 34 14 24 27 18 29 ­0.67
13 34 18 24 14 27 29 2
14 14 27 18 34 29 24 ­9.33
15 14 27 24 34 18 29 ­5.33
16 18 27 24 14 34 29 ­2.67
17 14 18 29 34 27 24 ­8
18 14 24 29 34 18 27 ­4
19 18 24 29 14 34 27 ­1.33
20 14 18 24 34 27 29 ­11.33

It is perhaps useful to see a simple example. Consider the case of 6 units, with 3
observations randomly assigned treatment. Imagine that the observed outcomes were
then, in the treatment group: (34, 27, 29), and in the control group: (14, 18, 24). A
simple comparison of means estimator suggests that the treatment effect is 11.33. To
calculate a p­value, we can permute all the possible combinations, and ask what pro­
portion of these are greater than or equal to this treatment effect. If we consider random
orderings of 6 units, this suggests that there are 6! possible combinations, but in reality,
as we are randomly choosing 3 units from these 6 to assign a permuted treatment sta­
tus, the actual value of different combinations is

(
6
3

)
= 6!

3!˚(6´3)!
= 20. We document

each of these possible permutations, as well as their permuted treatment effect in Ta­
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ble 1.1. In this case, we can see that only 1 of the 20 different permutations is greater
than or equal to 11.33 (the original treatment status). Suggesting an exact p­value of
1/20 = 0.05.

These methods are formally discussed in Athey and Imbens (2017) (among other
places). Using their notation, the p­value we refer to above is denoted as:

p = pr(|T ave(W,Y obs, X)| ě |T ave(W obs, Y obs, X)|).

where T ave refers to the statistic of interest (in our case the difference in means), and
we can see that the left­hand side of this equation is the original treatment effect where
each units true outcome Y is accompanied by its true treatment assignmentW , whereas
the right­hand side considers permutations where each Y is associated with randomly
assigned treatment statuses W . One of the strengths of this randomization inference
is that permutation can be performed over the same level of treatment assignment as
in the original experiment, for example allowing for clustered treatments.

A nice very applied discussion is provided in the paper by Heß (2017), which in­
troduces Stata tools to deal with randomization inference. It also shows the implemen­
tation for this in a particular paper, that of Fujiwara and Wantchekon (2013). Another
recent paper implementing these methods is that of Baranov et al. (2020), who esti­
mate the effect of random participation in a large psychotherapy program that reduced
post­partum depression of mothers in Pakistan on their long­term well being, financial
empowerment, and investments in children.

Finally, note that in general with a larger number of observations, we cannot cal­
culate an exact test,8 and thus generally we simply calculate a relatively large num­
ber of permutations at random. Some very applied advice is given by the Devel­
opment Impact Evaluation unit in the World Bank at the following page https://
dimewiki.worldbank.org/wiki/Randomization_Inference, suggesting the fol­
lowing steps:

1. Preserve the original treatment assignment.

2. Generate placebo treatment statuses according to the original assignmentmethod.
8Even with quite moderate number of observations, the total number of possible combinations grows

very quickly. For example, while 10 units with 5 randomly assigned treatments gives a reasonably man­
ageable

(
10
5

)
= 252 possible combinations, this grows quickly, with 20 units and 10 treatments resulting

in
(
20
10

)
= 184, 756 possible combinations, and 30 units and 15 treatments a massive

(
30
15

)
=155,117,520

possible combinations.

https://dimewiki.worldbank.org/wiki/Randomization_Inference
https://dimewiki.worldbank.org/wiki/Randomization_Inference
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3. Estimate the original regression equation with an additional term for the placebo
treatment.

4. Repeat #1–3.

5. The randomization inference p­value is the proportion of times the placebo treat­
ment effect was larger than the estimated treatment effect.
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Empirical Exercise 1: PROGRESA

Instructions: We will be using data from the conditional cash transfer program
PROGRESA. This randomized treatment at the level of the community, where all
people living below a poverty threshold received treatment in the treatment period
if they lived in the treatment community, and all others did not receive treatment.
For this, the dataset PROGRESA.dta is supplied. This dataset has observations on
an individuals treatment (progresa), student enrollment (enrolled) the time period
(t), whether the child lives in the treatment community (tcomm) and various other
covariates. The data is a panel, with the children observed in two periods. The
unique child identifier is called iid.

Please also note, that this assignment requires the use of two user written ado files.
These are psmatch2 and pscore. pscore is circulated with the Stata Journal,
so cannot be installed using ssc install. To install both sets of ado files, the
following commands should be used:

ssc install psmatch2
net from http://www.stata-journal.com/software/sj2-4
net install st0026
Questions:
(A) Descriptive Statistics Open that data and generate the following descriptive
statistics to get a feel for the data:

1. How many children are there in the data? Is the panel strongly balanced?

2. What percent of children from the data live in treatment villages?

3. Is the program correctly targeted (ie, where only poor children treated)?

4. Did all poor children in treatment municipalities receive treatment?

5. The variable “score” is a poverty score. How does the poverty score look for
poor and non­poor individuals?

(B) Experimental Evidence of the ImpactWe will now examine the experimental
outcomes of PROGRESA. In this section, we will thus focus on period 2 only (the
period in which the experiment was conducted).

1. What is the comparison of means estimator of the effect of PROGRESA
among eligible children in the period of the experiment when considering
the outcome of interest “enrolled”?

http://repec.org/bocode/p/psmatch2.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0026
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2. What are the assumptionswhichmust hold for this to be an unbiased estimate?

3. Does this seem reasonable in the context?

(C) Non­experimental analysis: Difference­in­difference Suppose that PRO­
GRESA had not conducted a randomized experiment, so that we only observed
data for households in treatment communities.

1. Do you think difference­in­means is a reasonable estimator of program im­
pacts in this case? Why?

2. Is the Diff­in­diff estimator (with treated and untreated) any better? What
assumptions underlie the use of this estimator?

3. Construct the difference­in­difference estimate of program impacts. How
does it compare to that obtained using the experimental design?

(D) Non­experimental analysis: Propensity score matching. Suppose instead
that we did not know the score nor the rule used by PROGRESA to allocate indi­
viduals to treatment and control status within treatment villages, we only observe
recipients and non recipients.

1. Using available variables from the baseline, such as initial incomes, genders,
and ages, construct an estimate of the propensity score using the stata com­
mand pscore. How does the choice of x variables affect calculation of the
propensity score p(x)?

2. Inspect graphically the distribution of propensity scores for recipients and non
recipients. Does it favor the overlap assumption?

3. Using this generated propensity score, estimate the ATT with Stata’s com­
mands psmatch2, using the default option (for nearest­neighbor matching)
and the kernel option (for kernel matching). How do the estimates compare
with each other? With the experimental results?
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2.1 Introduction

Sometimes we may be unwilling to assume that unconfoundedness holds, even
after conditioning on covariates X . In this case we say there is selection on unob­
servables. This opens up an entirely new set of techniques which must be used to
potentially estimate consistent effects of treatment. In section 2 and 3 we turn to these.

One particular case that we frequently encounter in which we may no longer be­
lieve in selection on unobservables is that of “natural experiments”, or naturally oc­
curring events which strike certain units of a sample but not others. To take one simple
example, imagine that we wish to estimate the impact of a natural disaster, such as an
earthquake, on school completion rates. Earthquakes are to some degree geographi­
cally localized, and it seems reasonable to think that they are not endogenously deter­
mined by affected individuals. However, this does not suggest that it is appropriate to
treat them as if they are randomly assigned, and simply compare the outcomes of af­
fected individuals with those of unaffected individuals. One important factor is that an
effect such as an earthquake hits an area which is potentially quite different at baseline
to areas which are not hit by an earthquake, and as such, any difference following the
earhtquake may owe to the event itself, or also to baseline differences in affected ar­
eas. In this case, the challenge in finding an appropriate counterfactual requires doing
something to capture differences at baseline, and often methods such as “difference­
in­differences” or related models are appropriate. We turn to these methods in this
chapter.

2.2 Difference­in­Differences and Two­Way Fixed Ef­
fect Models

The basic underpinnings of the difference­in­differences (or diff­in­diff, or DiD, or
DD, or double­difference) estimator is the case where we have observations of a pair
of units across time, one of which is exposed to some policy or “treatment” of interest,
and another of which is not. For example, for the case discussed above, imagine if we
observe average highschool completion rates in two areas across two periods, and in
one of the areas an earthquake occurred between the two periods, while in the other
it did not. Even in the case that the standard assumption of unconfoundedness is not
met (assumption 2 from the previous chapter), difference­in­differences allows us to
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recover an unbiased causal estimate if certain, weaker, assumptions are met.

Namely, difference­in­differences no longer requires that unconfoundedness holds,
but does require that it holds in first differences, or that selection only owes to a fixed
difference at baseline. Consider the following schematic example laid out in Figure
2.1. Here we use the notation ytreatment,time to refer to the outcome depending on its
exposure to the “treatment” (1 if eventually exposed, 0 if not), and time period (0
at baseline, 1 after treatment is in place). In the left­hand panel we can see what the
requirements would be if wished to use a standard comparison of means type estimator
based on unconfoundedness. Specifically, areas which are eventually treated and those
which are eventually untreated must look identical. However, in the right hand panel
we no longer have unconfoundedness, though it still holds in first differences given
that there is a constant difference between eventually treated and eventually untreated
units across time.1 This right­hand case is suitable for diff­in­diff type methods, but
would result in a clear bias if a comparison of means estimator was employed.

Figure 2.1: Panel Data: Levels and Difference

y

baseline, t = 0 intervention follow­up, t = 1

y1,1

time

y0,1

y0,0 = y1,0

(a) Unconfoundedness holds

E[y0,0|w = 1]

E[y0,1|w = 0]

E[y0,0|w = 0]

E[y0,1|w = 1]

y

baseline, t = 0 intervention follow­up, t = 1

y1,1

time

(b) Unconfoundedness fails in levels; holds
in first differences

2.2.1 A Canonical Difference­in­Differences Set­up

Let’s consider this two period and two area case and introduce some notation. We
will refer to time periods t, and areas s to indicate states (though of course these may
be regions, countries, villages, or even non­geographic units). Depending on the treat­
ment status of an individuals state, Wewill thus observe one of two potential outcomes:

(a) y1ist = Outcome for individual i at time t if their state of residence s is a treat­
ment state

1This is the commonly referred to “parallel­trend assumption” in difference­in­differences which we
will discuss further below.
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(b) y0ist = Outcome for individual i at time t if their state of residence s is a non­
treatment state.

As has always been the case with the potential outcomes, we will only observe at most
one of these in a particular state and time period.

The diff­in­diff set­up assumes an additive structure for potential outcomes. We
assume:

E[y0ist|s, t] = γs + λt (2.1)

This simply states that in the absence of treatment, the outcome consists of a time­
invariant state effect (γs) and a year effect (λt) that is common across states.

We are interested in the effect of some treatment w, giving the potential outcome
of:

yist = γs + λt + τwst + εist, (2.2)

where E[εist|s, t] = 0. In what remains we will think of two states, which we’ll call
AreaA and AreaB, and two time periods, which we’ll call Pre and Post. In the Pre

time period, neither state will receive treatment, however in the second time period
treatement will “switch on” in AreaA.

Let’s now consider what would happen if we were to estimate the treatment effect
by comparing potential outcomes in both states in the Post period:

E[yist|s = AreaA, t = Post] ´ E[yist|s = AreaB, t = Post]

= (γA + λPost + τ) ´ (γB + λPost)

= τ + γA ´ γB. (2.3)

In this case, we would only recover the unbiased treatment effect in the particular case
that the two states had identical mean values for γ, implying that they would have
identical values of E[y0ist]. Now, consider taking the first difference between the two
states in the Pre period:

E[yist|s = AreaA, t = Pre] ´ E[yist|s = AreaB, t = Pre]

= (γA + λPre) ´ (γB + λPre)

= γA ´ γB. (2.4)

Now, given that neither state receives treatment prior to the reform, all that remains
is the baseline difference in E[y0ist]. Then, combining these two single differences to
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form our double differences estimator gives:

E[yist|s = AreaA, t = Post] ´ E[yist|s = AreaB, t = Post] ´

E[yist|s = AreaA, t = Pre] ´ E[yist|s = AreaB, t = Pre] = (2.5)

(τ + γA ´ γB) ´ (γA ´ γB) = τ.

Thus, if our assumptions hold, diff­in­diff is a very elegant way to cancel out pre­
vailing differences between treatment and control areas, and recover a causal estimate
of treatment. These assumptions, of course, are something that we should always ques­
tion. The key identifying assumption in the diff­in­diff world is the so called “parallel
trends” assumption laid out in equation 2.1. In words, this just says that in the absence
of treatment, all states would follow a similar trend, defined by γt. Treatment then
induces a deviation from this common trend, as is illustrated in panel b of figure 2.1.
These parallel trend assumptions are something that we spend a lot of time thinking
about in diff­in­diff settings. We will return to this in section 2.2.4, and alternative
specifications if we are not convinced in sections 2.2.6 and 2.3.

Estimating Difference­in­Differences

Fortunately, along with an elegant theoretical structure, this methodology is easy
to take to data. Difference­in­differences can be very simply estimated in a regression
framework. In order to do so, we generate a number of dummy variables to capture
the additive structure defined in equation 2.2. Following the definitions above, we will
define a dummy variable called “AreaA” which takes 1 if the individual lives in Area
A, and 0 if they live in Area B.2 Similarly, we will define a variable Post, which takes
1 during the second time period, and 0 in the first.

Now, to estimate our treatment effect of interest we simply perform the following
regression:

yist = α + γAreaAs + λPostt + τ(AreaAs ˆ Postt) + εist. (2.6)

Our coefficient of interest τ , is associated with the termAreaA ˆPost: the interaction
termwhich switches on only in Area A after the reform. As Angrist and Pischke (2009,

2Remember, given multicolinearity and the dummy variable trap, we only need 1 dummy variable
if there are two geographical categories in the regression.
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s. 5.2.1) lay out, this leads to the following interpretation of regression parameters:

α = E[yist|s = AreaB, t = Pre] = γB + λPre (2.7)

γ = E[yist|s = AreaA, t = Pre] ´ E[yist|s = AreaB, t = Pre] = γA ´ γB (2.8)

λ = E[yist|s = AreaB, t = Post] ´ E[yist|s = AreaB, t = Pre] = λPost ´ λPre

τ = E[yist|s = AreaA, t = Post] ´ E[yist|s = AreaA, t = Pre] (2.9)

´ E[yist|s = AreaB, t = Post] ´ E[yist|s = AreaB, t = Pre] (2.10)

In this way, using a regression framework and appropriately defined dummy vari­
ables, we can immediately estimate both the desired treatment effect, as well as its
standard error. This regression setup is extremely convenient for a few reasons:

1. The structure is very generalisable. In the examples so far, we have considered
only a case where there are two states and two time periods. However, by in­
cluding additional time dummy variables and additional state dummy variables
in our regression model, we can extend this to a case with many states and/or
many time periods. This is a frequently used estimation technique in the empiri­
cal economics literature. For example, the suggested reading of Almond (2006)
provides a very nice example where many years of data are used, and many
states are in both the treated and untreated groups. However a recently develop­
ing literature has shown significant challenges here when treatment effects are
heterogeneous across groups or time. We return to this in section 2.2.2.

2. In this structure, we can replace our binary outcome “AreaA” for a variable
indicating treatment intensity. For example, if treatment is not binary, with all
states either being treated or un­treated, but rather varies by state, a measure of
intensity can be used to replace AreaA in the interaction term of 2.6. A classic
example of this methodology is provided in Duflo (2001) (see her equation 1).
We discuss this more formally when introducting “Fuzzy Diff­in­diff” models
later in this chapter.

3. When we set up the conditional regression, there is nothing which stops us from
controlling for additional (time varying) state­level variables. This allows us
to control for things which we think may otherwise cause the parallel trends
assumption not to hold. We will discuss this further in the next section.
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Table 2.1: Regression Interpretation of Difference­in­Differences

Estimand Estimate

Panel A: Area A
E[yist|s = AreaA, t = Post] α + γ + λ+ τ
E[yist|s = AreaA, t = Pre] α + γ
Single Difference = (α + γ + λ+ τ) ´ (α + γ) = λ+ τ

Panel B: Area B
E[yist|s = AreaB, t = Post] α + λ
E[yist|s = AreaB, t = Pre] α
Single Difference = (α + λ) ´ α = λ

Double Difference = (λ+ τ) ´ λ = τ

2.2.2 Two­Way Fixed Effect Models

Until quite recently, the two­by­two difference­in­differences model was treated
as if it generally extended to multiple time periods and treated states, regardless of
the context. For example, Angrist and Pischke (2009, p. 234) state “[i]t’s also easy to
add additional states or periods to the regression setup.”, and Bertrand et al. (2004)’s
seminal paper on inference in difference­in­differences models (which we will dis­
cuss later in this chapter) discuss the multi­period multi­state model as a “common
generalization of the most basic DD setup”. However, a growing body of work doc­
uments that these statements are only true if there is not heterogeneity in treatment
effects estimated, for example if treatment effects are constant over time. This body
of recent work, often with accompanying new methods and computational implemen­
tations, show that in the case of heterogeneous treatment effects, the standard “single
coefficient” model may result in estimators which are quite different to what the model
aims to capture. Here we discuss a number of these recent papers. In this whole sec­
tion, we will consider a generalised model of the form of equation 2.2. Equation 2.2
assumes potentially multiple individual­level observations for each state s and time
period t, and as such includes a subscript i. In many cases this is also estimated with
a single average outcome for each state and year, in which case the specification can
be simplified to:

yst = γs + λt + τwst + εst. (2.11)

These two way fixed effect models are frequently encountered in empirical economics
‘in the wild’. According to de Chaisemartin and D’Haultfoeuille (2020), 20% of em­
pirical papers published in the AER between 2010­12 are based on this type of model.
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The Basic Idea

The basic concern with these models when there are mutliple time periods and
multiple treatment states is that states may adopt treatment at different times. Athey
and Imbens (2022) refer to these as “staggered adoption design”. These staggered
adoption designs can have important impacts on the nature of the coefficient estimated
from equation 2.2 given that the key variation in estimating τ̂ comes from the moment
when a unit changes treatment status, from non­treated to treated. Thus, if there are
multiple periods, and a unit has already changed treatment status and is treated across
multiple periods, given the nature of the OLS regression estimator it will itself be seen
as a control unit in these periods given the lack of variation inwst across these periods.

This has been laid out graphically in Goodman­Bacon (2021). The key graphs from
this graphical set­up (Goodman­Bacon’s Figures 1 and 2) are reproduced as Figure 2.2
below. In panel (a) we see an example where three states are considered (an early
treatment indicated with triangles, a late treatment indicated with circles, and a never
treated indicated as a solid line), with multiple time periods. As Goodman­Bacon
(2021) (and others) show, the estimated parameter from 2.2 will consist of all possible
combinations of “2ˆ2” comparisons. These “2ˆ2” comparisons are indicated in panel
(b) using dark colours in each sub­panel. In particular, here there are two concerns.
Firstly, there is one comparison which is somewhat strange, and that is the comparison
indicated in D. Here the “control” group refers to the early treatment group, which
does not change status in the post period, and the “treatment” group refers to the late
treatment group which does change treatment status in this period. And the second
issue is that these four “2 ˆ 2” comparisons will not be given equal weight when
arriving to a single coefficient estimate τ̂ . We discuss these with more formal notation
now.

Roughly speaking, the weighting issue is that each possible “2ˆ2” comparisonwill
receive a different weight, with this weight not being linked to some logical property
of a treatment effect estimator we wish to uncover, but rather mechanical properties of
OLSwhich we discuss below. To see this formally, we lay out Goodman­Bacon (2021,
proposition 1). We will use his notation for comparison with Figure 2.2. Consider a
balanced panel of observations for k = 1, . . . , K groups receiving a binary treatment
t P (1, T ), as well as potentially an untreated group denoted U . The OLS estimate of
equation 2.2 is a weighted average of all possible 2 ˆ 2 DD estimators:

pτ =
ÿ

k‰U

WkU ¨ β̂2ˆ2
kU +

ÿ

k‰U

ÿ

ląk

[
W k

kl ¨ β̂2ˆ2,k
kl +W l

kl ¨ β̂2ˆ2,l
kl

]
, (2.12)
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Figure 2.2: Goodman­Bacon (2021)’s Graphical Set­up with Three Treatment Groups

(a) The General Setting

(b) The DD Decomposition
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where here l refers to all units which adopt treatment later than unit k. Thus, the OLS
estimate of the two­way fixed effect estimate actually consists of a weighted mean of
three groups of estimates (the β̂ terms refer to these estimates, and the weights are
indicated by W ). These estimates are precisely those laid out in panel (b) of figure
2.2. Specifically:

β̂2ˆ2
kU ”

(
ȳ
Post(k)
k ´ ȳ

Pre(k)
k

)
´

(
ȳ
Post(k)
U ´ ȳ

Pre(k)
U

)
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β̂2ˆ2,k
kl ”
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ȳ
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Pre(k)
k

)
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l ´ ȳ
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l

)
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β̂2ˆ2,l
kl ”

(
ȳ
Post(l)
l ´ ȳ

Mid(k,l)
l

)
´

(
ȳ
Post(l)
k ´ ȳ

Mid(k,l)
k

)
[GROUP D]. (2.15)

In understanding the global estimate, the question of interest relates to the weights
given to each of the groups of estimates listed in equations 2.13, 2.14 and 2.15. These
sum to one, and are:

WkU =
(nk + nU)

2V̂ D
kU

V̂ D
(2.16)

W k
kl =

[(nk + nl)(1 ´ D̄l)]
2V̂ D,k

kl

V̂ D
(2.17)

W l
kl =

[(nk + nl)D̄k]
2V̂ D,l

kl

V̂ D
(2.18)

(2.19)

where n refers to the sample share of a particular group in the whole, and D̄ refers to the
share of time that the sample is treated. Finally, the terms V̂ D

kU , V̂
D,k
kl and V̂ D,l

kl refers
to how much treatment varies in each subsample,3 and V̂ D to how much treatment
varies overall. This variance is largest when the two groups are closer in size and
when treatment occurs closer to the middle of the considered time period.

While this weighting of the two­way fixed effect estimator is very interesting, what
is perhaps more key is that where there is heterogeneity in the effects over time, the
OLS estimate may be a considerably biased estimate of a weighted average of ATTs.
While the full derivations are provided in Goodman­Bacon (2021, section II), the logic
comes from the comparison between “already treated units” and newly treated units.
If the impact of treatment is changing over time and already treated units are used as
“control” units in future periods, this change in treatment effect will be mistakenly
included as part of the control group. As Goodman­Bacon (2021) states, this “yields

3This depends positively on having groups which are more equally balanced between treatment
and control units, and the variation in the treatment indicator in the subsample. See equations 7­9 of
Goodman­Bacon (2021) for full definitions.
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estimates that are too small or even wrong­signed”.

A somewhat related discussion, along with a proposed alternative estimator, is
provided in de Chaisemartin and D’Haultfoeuille (2020). We discuss their results, as
well as their proposed “DIDM” estimator, in what follows. To do so, we (roughly)4

follow their notation. That is, we consider a treatment applied at the level of group
S and time T . For each (s, t) P t1, . . . , Su ˆ t1, . . . , T u, the quantity Ns,t refers to
the number of observations in this group s, t, and the total quantity of observations
is N =

řG
s=1

řt
t=1Ns,t. Note that in this case, if there is a single observation for

each state and time period this is not an issue, but the design also allows for multiple
observations in each group. For each (i, s, t) P t1, . . . , Ns,tuˆt1, . . . , Suˆt1, . . . , T u,
the variableDi,s,t is the treatment status, and (Yi,s,t(0), Yi,s,t(1)) are potential outcomes
without and with treatment respectively. Finally,Ds,t, Ys,t(0), Ys,t(1) and Ys,t all refer
to simple averages over i.

de Chaisemartin and D’Haultfoeuille (2020) define pβfe as the coefficient estimated
in the following (standard) two­way fixed effects regression:

Yi,s,t = β0 + βfeDs,t + µs + λt + εs,t,

which is essentially what we define in equation 2.11. They also define the ATE for
any (s,t) cell as:

∆s,t =
1

Ns,t

Ns,t
ÿ

i=1

[Yi,s,t(1) ´ Yi,s,t(0)],

and define δTR as:

δTR = E

[
ÿ

s,t:Ds,t=1

Ns,t

N1

∆s,t

]
, (2.20)

where N1 refers to the sum of all treated observations. This quantity δTR is the ex­
pectation of the weighted average of the ATE among all treated units, or in other
words, the expectation of the ATT. One of the key results of de Chaisemartin and
D’Haultfoeuille (2020) is to show that under a series of standard assumptions for

4I have replaced g for groups with s for states, so that this notation follows more closely what we
have been doing so far.
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difference­in­differences style models5:

βfe = E

[
ÿ

s,t:Ds,t=1

Ns,t

N1

ws,t∆s,t

]
, (2.21)

where:
ws,t =

εs,t
ř

s,t:Ds,t=1
Ns,t

N1
εs,t

, (2.22)

and εs,t is the residual from a regression of Ds,t on state and time fixed­effects. This
is important, given that it implies that generally βfe ‰ δTR, or in other words, β̂fe is a
biased estimator of the ATT. This is clear in comparing 2.20 with 2.21. The existence
of the weighting term in 2.21 implies that certain groups’ treatment effects will be
given more or less weight. And what is most worrying with this result is that ws,t can
be negative. In their Proposition 1 de Chaisemartin and D’Haultfoeuille (2020) show
that these negative weights are more likely when:

• The ATE of interest is in a period in which a larger fraction of units are treated

• The ATE is for a group which is treated for many periods

A somewhat related decomposition is provided in Athey and Imbens (2022, Lemma
5) (who additionally go on to discuss a number of very important points on inference),
however their baseline assumptions and final result are somewhat different. In section
3.1 of their paper de Chaisemartin and D’Haultfoeuille (2020) provide a simple nu­
merical illustration. We consider a different example later on in this section of these
notes.

What Should we do?

de Chaisemartin and D’Haultfoeuille (2020) propose an alternative estimator that
is suitable for heterogeneous treatment effects. They define the quantity:

δS = E

 1

NS

ÿ

(i,s,t:tě2,Ds,t‰Ds,t´1)

[Yi,s,t(1) ´ Yi,s,t(0)]


5These assumptions are (1) a balanced panel over s and t, (2) A “sharp” design where all units of a

state receive treatment at the same time, (3) A nomulti­colinearity assumption, (4) Strict exogeneity and
(5) a parallel­trends assumption. If you wish to see how equality 2.20 is shown, refer to de Chaisemartin
and D’Haultfoeuille (2020) proof of theorem 1 in their appendix A. This is not necessary for this course.
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where NS refers to the quantity of treated units in the indicated cells. δS is thus the
ATE for all cells that change their treatment status (eg from 0 to 1), at the moment that
they begin to receive their new treatment. Under a series of assumptions laid out in
their paper – including a common trends assumption6 – thy suggest that this can be
estimated using the following quantities. First define:

DID+,t =
ÿ

s:Ds,t=1,Ds,t´1=0

Ns,t

N1,0,t

(Ys,t ´ Ys,t´1) ´
ÿ

s:Ds,t=Ds,t´1=0

Ns,t

N0,0,t

(Ys,t ´ Ys,t´1)

which compares the evolution of average outcomes in units changing treatment status
between t ´ 1 and t with those who remain unchanged. Similarly, if relevant,

DID´,t =
ÿ

s:Ds,t=Ds,t´1=1

Ns,t

N1,1,t

(Ys,t ´ Ys,t´1) ´
ÿ

s:Ds,t=0,Ds,t´1=1

Ns,t

N0,1,t

(Ys,t ´ Ys,t´1)

captures the change betweenmean outcomes between t´1 and t comparing those units
which stop receiving treatment to units whose treatment status remains unchanged.
In the case of standard “staggered” two way FE models where units adopt treatment
and are then treated forever after, DID´,t will not exist, and so will be set as 0 by
definition. Then, they propose their DIDM estimator es as the weighted average of
these quantities over all time periods:

DIDM =
T

ÿ

t=2

(
N1,0,t

NS

DID+,t +
N0,1,t

NS

DID´,t

)
.

They show that under their assumptions, E[DIDM ] = δS , a potentially more rea­
sonable treatment estimator to consider. A similar estimator is proposed in Imai and
Kim (2020). One benefit of this estimator is that we can use a similar version to con­
sider both placebo tests, as well as dynamic treatment effects. de Chaisemartin and
D’Haultfoeuille (2020) propose using the same structure of the DIDM estimator to
estimate placebo versions, where rather than comparing changes between groups and
t´1 and t, we compare lagged treatments, for example between t´2 and t´1. These
are placebos as if we believe that parallel trends hold, we should see that these esti­
mates prior to treatment do not result in any significant treatment effect. Similarly, we
can consider dynamic treatment effects if rather than comparing changes between t´1

and t, we compare changes between the baseline difference, and other future periods,
such as between t ´ 1 and t+ 1, between t ´ 1 and t+ 2, and so forth. They provide
software to implement these estimators (andmore), which wewill discuss slightly later

6Specifically, they assume “Common trends for Y (1)”, or that: for t ě 2, E(Ys,t(1)´Ys,t´1) does
not vary across s.
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in this section.

Like de Chaisemartin and D’Haultfoeuille (2020), Callaway and Sant’Anna (2021)
also start their analysis considering group and time specific treatment effects, focusing
onATT (s, t) for groups (which here we denote s) at different time periods t. Based on
these group­specific treatment effects, Callaway and Sant’Anna (2021) discuss “mak­
ing inference about, …, funciontals ofATT (s, t)”.7 Among other things, starting with
group and time specific treatment effects allows for the consideration of various types
of heterogeneity, including heterogeneity by time of adoption, and by time since adop­
tion.

While Callaway and Sant’Anna (2021) discuss a more complex estimator when
controls are required, if a standard parallel­trends assumption holds, they note that

ATT (s, t) = E[Yt ´ Ys´1|Gs = 1] ´ E[Yt ´ Ys´1|C = 1].

where Gs is a binary indicator taking one if a state is first treated in period s. Thus,
here states are indexed by their treatment time, called s. In the case that a state is never
treated, it is included in controls, and the binary variable C = 1 for these units, and
0 otherwise. Thus, states must have one and only one value arcoss all variables Gs

(@s) and C. They call this quantity ATT (s, t) the “Group Average Treatment Effect”
as it will (potentially) be different for each treatment group s and time period t. Their
paper focuses on how to best aggregate these treatment effects in a logical way, and
they suggest a range of estimators. Their most simple aggregates are:

2

T (T ´ 1)

T
ÿ

s=2

T
ÿ

t=2

1ts ď tuATT (s, t) and
1

κ

T
ÿ

s=2

T
ÿ

t=2

1ts ď tuATT (s, t)P (G = s)

where T is the final treatment period, and 1t¨u is a binary indicator implying the indi­
cated condition should be met. Thus, these estimators thus weight all observed ATTs,
either with the same weight for each group and year (left­hand case) or depending on
their frequency in the data (right hand case). This avoids the weighting issue laid out by
(among others) de Chaisemartin and D’Haultfoeuille (2020). However, Callaway and
Sant’Anna (2021) also show that there are various other estimators that likely make
sense, including estimates aggregated by:

• the period when units are first treated

• the amount of time the treatment has been in place (dynamic treatment effects)
7Callaway and Sant’Anna (2021) use the letter g to refer to groups, whereas here we are using s for

consistency with earlier discussion.
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• the effect in a given calendar year (calendar time effects).

In their paper they provide full derivations, estimation and inference details, and an
illustration based on the effect of the US minimum wage and teen employment.

A Discussion on Practical Issues

Fortunately many of the recent advances in this literature comewith accompanying
computational routines, frequently written for R or for Stata. For example, Goodman­
Bacon’s decomposition has been implemented in Stata as bacondecomp (Goodman­
Bacon et al., 2019), and a version is also available in R. The methods of de Chaise­
martin and D’Haultfoeuille (2020) are available in Stata provided by de Chaisemartin
et al. (2019b) (for implementing their proposedDIDM estimator) and de Chaisemartin
et al. (2019a) (for calculating the weights of all treatment effects. The estimators pro­
posed by Callaway and Sant’Anna (2021) are available in R as the “did” package
(Callaway and Sant’Anna, 2020). These are a tremendous resource for simply im­
plementing the latest methods designed for causal inference in models of these types,
however it is important to understand the methods behind the libraries before simply
diving into estimation. We will discuss a simple example further below.

A Numerical Example

The results fromGoodman­Bacon and those of deChaisemartin andD’Haultfoeuille
(2020) are similar, however they take quite different paths to get there. Goodman­
Bacon’s (like that laid out in Athey and Imbens (2022)) is “mechanical” in that it is
based on the underlying diff­in­diff comparisons. The result in de Chaisemartin and
D’Haultfoeuille (2020) is based on a potential outcomes frame­work and a series of
assumptions underlying the regression. This to examine how these methods work re­
quires somewhat different frameworks. In the case of Goodman­Bacon (2021), we
should consider all possible DD comparisons, while in the case of de Chaisemartin and
D’Haultfoeuille (2020) we should consider each unit’s ATE, which requires knowing
the observed and counterfactual state. To examine this in a more applied way, let’s
consider a construted example.

Consider a panel of 3 states/areas, over the 10 years (t) of 2000 to 2009. One of
these units is entirely untreated (unit=1), one is treated at time period 2003 (unit=2),
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and the other is treated at time period 2006 (unit=3). We will consider a simple­case
where the actual data­generating process is known as:

yunit,t = 2+0.2ˆ(t´2000)+1ˆunit+β1ˆpostˆunit+β2ˆpostˆunitˆ(t´treat).

In this mode unit refers to the unit number listed above (1, 2 or 3), post indicates
that a unit is receiving treatment in the relevant time period t, and treat refers to the
treatment period (2003 for unit 2, and 2006 for unit 3). We will examine this set­up in
R and Stata code in class.8 This specification allows for each unit to have its own fixed
effect, given that unit is multiplied by 1, and allows for a general time trend increasing
by 0.2 units each period across the whole sample. The impact of treatment comes from
the units β1 and β2. The first of these, β1, captures an immediate unit­specific jump
when treatment is implemented which remains stable over time. The second of these,
β2, implies a trend break occurring only for the treated units once treatment comes into
place. We will consider 2 cases below. In one case β1 = 1 and β2 = 0 (a simple case
with a constant treatment effect per unit), and in a second case β1 = 1 and β2 = 0.45

(a more complex case in which there are heterogeneous treatment effects over time.
These two cases are plotted in panels (a) and (b) respectively of Figure 2.3.

Below each panel of the plot we provide the decomposition of each treatment
effect following the formulae of Goodman­Bacon (2021) and de Chaisemartin and
D’Haultfoeuille (2020). Note that in the case of Goodman­Bacon (2021) this requires
calculating four specific effects, which are the comparisons of each treated unit with
the untreated unit, and each treated unit with each other. In the simple decomposi­
tion these are constant effects of 3 and 2 for early and later treated units given that
the “treatment effect” is simply 1 ˆ unit in each case. However, in the second case
this is more complicated, as we must take into account the time trends. This results in
the surprising behaviour flagged by Goodman­Bacon (2021) where despite each unit
specific treatment effect being positive, the parameter pβ2ˆ2,l

kl is actually negative given
that it compares the change from the later­adopting unit (unit 2) with the unchanging
portion of the earlier­adopting unit (unit 3), where the treatment effect for unit 3 grows
more over time than that of unit 2.

8Refer to twowayfe.R and twowayfe.do.
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Figure 2.3: A Numerical Example of Time­Varying Treatment Effects
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(b) Decomposition with trends

(a) Simple Decomposition (b) Decomposition with trends
β̂ Weight β̂ Weight

Goodman­Bacon
pβ2ˆ2
kU 3 0.318 7.05 0.318

pβ2ˆ2
lU 2 0.364 3.35 0.364

pβ2ˆ2,k
kl 3 0.136 4.35 0.136

pβ2ˆ2,l
kl 2 0.182 ­1.38 0.182

pτ 2.45 1 3.8 1

de Chaisemartin and D’Haultfoeuille
pβ2,2006 2 0.136 2 0.136
pβ2,2007 2 0.136 2.9 0.136
pβ2,2008 2 0.136 3.8 0.136
pβ2,2009 2 0.136 4.7 0.136
pβ3,2003 3 0.152 3 0.152
pβ3,2004 3 0.152 4.35 0.152
pβ3,2005 3 0.152 5.7 0.152
pβ3,2006 3 0 7.05 0
pβ3,2007 3 0 8.4 0
pβ3,2008 3 0 9.75 0
pβ3,2009 3 0 11.1 0
pβfe 2.45 1 3.8 1

Below the decomposition following Goodman­Bacon, we present the decomposi­
tion of de Chaisemartin and D’Haultfoeuille (2020). Here we must calculate an ATE
for each unit which recevies treatment in each period, where the counterfactual case
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simply refers to the outcome had β1 and β2 been 0. Here, we once again see why
the total treatment effect (called βfe) in de Chaisemartin and D’Haultfoeuille (2020)
is not a simple average of all unit­specific treatment effects. Given the proportions
of treated and untreated observations for each unit, the post­2006 ATEs for unit 3 are
given 0 weights, and hence form no part of the global ATT. Note that if we change the
time period when units first receive treatments, this weight can even turn negative (for
example if unit 3 first receives treatment prior to 2003, or unit 2 first receives treatment
after 2006). We will explore this in more depth in the R and Stata codes, which also
examine how the estimators proposed by de Chaisemartin and D’Haultfoeuille (2020)
result in a much more logical treatment effect.

2.2.3 Inference in Diff­in­Diff

Up to this point, we have principally focused on estimation of difference­in­differences
and two­way fixed effect models. However, there is a long literature pointing to im­
portant inferential considerations which must be taken into account for the estimation
of appropriate standard errors and the construction of appropriate confidence intervals.

A Brief Review of Variance and Standard Error Estimation As you will remem­
ber from prior econometrics courses, estimating standard errors correctly relies on the
Gauss­Markov assumptions. However, in many cases, it is hard to assume that the
εit terms are i.i.d. For one, we may expect that individual outcomes in the same area
and the same year may be correlated: Cov(εit, εjt|si = sj) ‰ 0. We would also expect
shockswhich affect each group to be serially correlated over time (Cov(εit+1, εjt|si = sj) ‰

0). Bertrand et al. (2004) discuss many of these issues in their paper “How Much
Should We Trust Differences­in­Differences Estimates?”.

Themost commonly used solution to this problem is to cluster standard errors at the
group level. To see how this works, let’s start with the most basic “plain vanilla” stan­
dard errors. As you will likely recall, we calculate standard errors from the variance­
covariance matrix of our OLS estimators β. In particular, the standard errors are the
square root of the variance of a particular estimator (or the square root of the diago­
nal of the variance­covariance matrix). For now, let’s consider a simple model with a
single independent variable xi and a dependent variable yi, each of which have been
demeaned for simplicity. We can thus write the formula for the variance­covariance
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matrix as follows:

V (β̂) =
V
[
řN

i=1 xiui

]
(

řN
i=1 x

2
i

)2
where ui refers to the residual term of our OLS model.

Of course we never actually observe ui, so to arrive at an estimable variance­
covariance matrix we need to go slightly further. In the simplest case where we assume
that errors are completely uncorrelated, the numerator of this variance­covariance ma­
trix is: V

[
řN

i=1 xiui

]
=

řN
i=1 V [xiui] =

řN
i=1 x

2
iV [ui] =

řN
i=1 x

2
iσ

2, and the vari­
ance is thus:

pV (β̂) =
pσ2

ř2
i=1 x

2
i

.

Note in the above that nowwe add a hat to the V term as it is an estimated quantity, and
that this estimate depends on σ2, which is estimated byOLS as pσ2 =

řN
i=1 û

2
i /(N´K).

This most basic calculation for pV (β̂) assumes that the variance of ui is constant
for all observations (homoscedasticity). From introductory econometrics courses we
already know of one type of loosening of this most basic variance­covariance matrix,
and this is the heteroscedasticity robust version of White (1980).

pV (β̂)H =

(
řN

i=1 x
2
i û

2
i

)
(
ř2

i=1 x
2
i

)2 .

In the above we add a subscriptH to indicate that it is heteroscedasticity robust, where
we note that we now allow arbitrary correlations between xi and ui in the numerator
term.

However, what we want with clustered standard errors is not that an individual’s
error term can depend on their own level of xi, but rather that the error of one indi­
vidual can be correlated with error of another individual! So then, we need to allow
for a further loosening of the variance­covariance matrix to build in this cross­unit
dependence. This brings us to the cluster­robust version:

pV (β̂)C =

(
řN

i=1

řN
j=1 xixjûiûj1ti, j from the same clusteru

)
(
ř2

i=1 x
2
i

)2 .

In this formula, 1 is an indicator function equal to one if two individuals share a clus­
ter, and 0 otherwise. This avove variance­covariance matrix now permits not only
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homoscedasticity, but also arbitrary correlation between units within clusters. This is
what we generally prefer to use in difference­in­difference estimates.

This variance term is typically larger than the “standard” variance term of OLS, and
the degree to which the cluster robust variance inflates the (overly precise) standard
variance is known as the “Moulton factor”, after the paper which laid this out (Moulton,
1986). For additional discussion, see Moulton (1986) or Angrist and Pischke (2009,
chapter 8), but note that in general, the downward bias in the standard OLS variance
general increases to the degree that:

(a) The size of clusters is larger

(b) The correlation within the cluster for the variable of interest

(c) The correlation within the cluster of the error term.

Practical Considerations in Variance Estimates This formula is presented in ma­
trix form in Cameron et al. (2008). Consider a regression model where observations i
are clustered in groups s:

yis = x1
isβ + uis for i = 1, . . . , N, s = 1, . . . , S.

This can be aggregated to the level of the cluster as:

ys = Xsβ + us, s = 1, . . . , S,

or simply in matrix form as:
y = Xβ + u,

Here, the cluster­robust variance­covariance estimator (CRVE) can be written in ma­
trix form as:

pVCR(pβ) = (X 1X)´1

(
S

ÿ

s=1

Xsûsû
1
sX

1
s

)
(X 1X)´1, (2.23)

where ûsû
1
s estimates the intra­cluster correlation. The standard solution for difference­

in­difference style models is to allow for within­cluster auto­correlation by using a
CRVE such as the above to estimate standard errors and confidence intervals on re­
gression parameters. Such an estimator is provided as standard in Stata by specify­
ing the vce(cluster clustvar) option in regression models. However, as has been
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extensively documented (eg Cameron and Miller (2015)), standard CRVEs are only
asymptotically valid, where the asymptotic behavior depends on the number of clus­
ters S Ñ 8. When standard clustering is used based on ‘too few’ clusters, the CRVE
is generally downward­biased, resulting in over­rejection of null hypotheses. This bias
occurs because E(ûsû

1
s) ‰ usu

1
s in equatiuon 2.23, with the latter term being the true

intra­cluster variation. While in general, computational packages make small sample
corrections for this bias9, in certain cases this bias can be severe (Cameron and Miller,
2015; Mackinnon and Webb, 2018), even using these standard corrections.

Thus, while clustering is computationally simple, clustered standard errors are gen­
erally only correct if “enough” clusters are included. This implies that for clustered
standard errors to hold in diff­in­diff regressions, a sufficient number of treatment and
non­treatment states must exist. In practice, knowing how many clusters it ‘too few’
depends on a number of factors. While there are rules of thumb such as the rule of 42
laid out in Angrist and Pischke (2009) which suggests that standard clustering provides
a good approximation if S ě 42 clusters, the performance of these methods under sim­
ulation has been shown to depend also on the relative size of clusters (Mackinnon and
Webb, 2017). A range of results surveyed in Cameron and Miller (2015) leads to their
suggestion that if one is analyzing data with fewer than 50 clusters in a state­year panel
(such as the case with panel­event studies), alternative inference methods should be
considered.

However, what should we do if we have an application in which we would like
to cluster our standard errors, but don’t have a large enough number of clusters? It
is important to note that the answer most certainly is not ‘just cluster anyway’. If
we use traditional clustered standard errors with a small number of clusters we will
very likely underestimate our standard errors, and thus over­reject null hypotheses.
Fortunately, alternative solutions do exist. The most common solution is to use a wild
cluster bootstrap. This is based on the logic of the bootstrap. The bootstrap, from
Efron (1979) is a resampling procedure. In this case, rather than calculating standard
errors analytically (ie using a formula), we simulate many different samples of data,
and based on estimates from each sample we can observe the variation in underlying
parameters of interest, and hence build confidence intervals and rejection regions. The

9For example, Stata estimates the CRVE as:

pVCR(pβ) = (X 1X)´1

(
S

ÿ

s=1

Xsũsũ
1
sX

1
s

)
(X 1X)´1,

where ũs =
?
cûs, with c being a small sample correction c = (S/(S ´ 1))ˆ ((N ´ 1)/(N ´ k)) and

û = y ´ X pβ are standard regression residuals (Cameron et al., 2008).
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idea of the bootstrap is that we should treat the sample as the population. Then we
can draw (with replacement) many samples of size N from this “population”, and
for each of these resamples we can calculate our estimator of interest, arriving at a
distribution for the estimator and hence confidence intervals and standard errors. The
wild bootstrap is simply a type of bootstrap procedure where we resample respecting
the original clusters in our data. We will discuss this at more length in an example in
class.

In this case where the quasi­experimental set­up is based on fewer than around 50
clusters, the wild cluster bootstrap has been documented to be a successful resampling­
based method to take account of auto­correlation in variables underlying panel event
studies, even in cases with fewer clusters (see eg Cameron et al. (2008); Cameron
and Miller (2015); Roodman et al. (2019)). This has been efficiently implemented in
Stata as described in Roodman et al. (2019), and programmed for Stata as boottest
(Roodman, 2015). Finally, note that in the case of very few clusters, and in particular
few clusters where an event occurs, inference is further complicated. In cases such
as this a number of potential solutions have been proposed, such as those described in
Mackinnon andWebb (2018); Conley and Taber (2011). If you are interested in further
details these papers will provide a comprehensive background.

2.2.4 Testing Diff­in­Diff Assumptions

In the preceding sections, we have seen that inferring causality in two­way fixed
effect and difference­in­difference models relies crucially on the validity of the paral­
lel trends assumption. If average outcomes in treatment and control areas would have
followed different trends even in the absence of treatment, any estimated parameters
will reflect both variations in prevailing trends, as well as the true treatment effect.
While this is not something that we can ever test formally given that it requires ob­
serving the (unobserved) counterfactual state, one thing that we can sometimes do is
formally examine how trends in outcomes treated and untreated areas were evolving
prior to the reform. While this does not amount to a formal test of the parallel trend
assumption, it would cast suspicion on our model assumptions if parallel trends did
not even hold in the pre­treatment window.

One particular case in which these parallel pre­trends will not hold is the case of
the so­called “Ashenfelter dip”. This Ashenfelter dip, named for the labour economist
Orley Ashenfelter, and particularly the results in Ashenfelter (1978), recognises that
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often participants in labour market training programs have a reduction earnings im­
mediately before participation in the program. The logic of this is that if individuals
self­select into training programs, many of those who select in will be those who have
lost their job, and hence particiapte in the training program as part of a job search.
This pattern of outcomes has been shown in a wide array of labour market training
programs (see, for example, (Heckman and Smith, 1999)). The trouble with this sort
of dynamics is that these reductions in mean salary are largely transitory, and the par­
ticipants would have experienced an increase in salary in the following years even in
the absence of the program. In other words, participants and non­participants would
not have followed parallel trends, as participants should recover their earlier earnings,
while non­participants face no such dynamic.

There exist a number of ways to examine the validity of the parallel trends as­
sumption, which will identify, among other things, the Ashenfelter dip. However,
even using these techniques, in no case can we ever prove definitively that it holds;
we can only provide evidence suggestive that it is a reasonable assumption to make10.
You could think of tests of this type as analogous to tests of instrumental overidentifi­
cation. While they are not definitive proofs of assumptions, they at least provide some
evidence that they aren’t entirely unreasonable in the context examined.

If multiple pre­treatment periods of data are observed, the simplest test is to remove
all post­treatment data, and run the same specification, but using a placebo which tests
whether any differences are found between treatment and control states entirely before
the reform had been implemented. If we do find that there is a difference over time
even in the absence of the reform, this may be quite concerning when moving to the
post­reform case. Amore extensive test of the validity of the parallel trends assumption
is the use of the “panel event study analysis”, which additionally allows us to examine
the dynamics of any treatment effects post­reform.

An event study can be thought of as a test following the ideas of Granger Causality
(Granger, 1969). If it is the case that the reform is truly causing the effect, we should
see that any differences between treatment and control states emerge only after the
reform has been implemented, and that in all years prior to the reform, differences be­
tween treatment and non­treatment areas remain constant. Thus, the basic idea behind
the panel event study is that we should observe how outcomes in treated versus un­
treated areas evolve in the pre­reform period (relative to a baseline omitted category),
as well as how the evolve once the reform has been put in place.

10This is just another example of the “fundamental problem of causal inference” of Holland (1986)
that we discussed earlier in this lecture series.
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A graphical example of what these sorts of test look like is provided in figure 2.4.
This presents rates of maternal mortality surrounding the adoption of a parliamen­
tary gender quota (see Bhalotra et al. (2022)). In this case in each pre­reform period,
no difference is observed between trends of maternal mortality in treatment and non­
treatment areas. Following the reform however, a significant reduction in the outcome
variable is seen in the treatment areas when compared to non­treatment areas. Re­
sults of this type provide significant support for the validity a difference­in­difference
methodology, with the added benefit that we can also consider the dynamics of the
effect of the reform over time. We turn to the specifics of this design in section 2.2.5,
where we discuss dynamics in difference­in­difference style designs in more depth.

Figure 2.4: Event Study Graph and Reform Timing
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2.2.5 Dynamics and Two­way Fixed Effect Models

The Panel Event Study Model

There is a burgeoning literature discussiong panel event study methods, including
the work of Borusyak and Jaravel (2018); Freyaldenhoven et al. (2019); Schmidheiny
and Siegloch (2019). The discussion in this section is drawn from Clarke and Tapia
Schythe (2020), which provides background, and a review of estimation in Stata. In
laying out the panel event study, consider a panel covering states s and time periods t.
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We are interested in estimating the impact of the passage of an event which may occur
at different times in different states (what we have been calling a staggered assignment
design above). We will denote as Events a variable recording the time period t in
which the event is adopted in state s. Denoting the outcome of interest as yst, the
panel event study specification can be written as:

yst = α +
J

ÿ

j=2

βj(Lag j)st +
K
ÿ

k=1

γk(Lead k)st + µs + λt +X 1
stΓ + εst. (2.24)

Here µs and λt are state and time fixed effects,Xst are (optionally) time­varying con­
trols, and εst is an unobserved error term. In equation 2.24, lags and leads to the event
of interest are defined as follows:

(Lag J)st = 1[t ď Events ´ J ], (2.25)

(Lag j)st = 1[t = Events ´ j] for j P t1, . . . , J ´ 1u, (2.26)

(Lead k)st = 1[t = Events + k] for k P t1, . . . , K ´ 1u, (2.27)

(LeadK)st = 1[t ě Events +K]. (2.28)

Lags and leads are thus binary variables indicating that the given state was a given
number of periods away from the event of interest in the respective time period. J

andK lags and leads are included respectively, and, as indicated in equations 2.25 and
2.28, final lags and leads “accumulate” lags or leads beyond J andK periods. A single
lag or lead variable is omitted to capture the baseline difference between areas where
the event does and does not occur. In specification 2.24, as standard, this baseline
omitted case is the first lag, where j = 1.11

11There are a number of ways to specify such a model. Slightly different notations are used by
Schmidheiny and Siegloch (2019) who define the model as:

yst =
j

ÿ

j=j

βjb
j
st + µs + λt + εst, where bjst =

$

’

&

’

%

1[t ď Events + j] if j = j

1[t = Events + j] if j ă j ă j

1[t ě Events + j] if j = j,

and where j is equivalent to our definition of J and j is equivalent to our L. In the case of Freyalden­
hoven et al. (2019), they define a version of this model as:

yst = δ´K+(1 ´ zs,t+(K´1)) + δL+zs,t´L +
K´1
ÿ

k=´(L´1)

δ´k∆zs,t+k + µs + λt + εst,

where zst ” PostEventst as defined in Table 2.2, zs,t+k and zs,t´k refer to lags and leads of this
variable respectively, and∆ refer to the first difference of these lag/lead terms. These models, and that
laid out in equations 2.24­2.28 are equivalent.
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Table 2.2: A Stylized Example of a Panel Event Study

State Year Event Post Time to Lag Lag Lag Lag Lead Lead Lead Lead Lead
(s) (t) Event Event 4 3 2 1 0 1 2 3 4

State A 2000 2004 0 ­4 1 0 0 0 0 0 0 0 0
State A 2001 2004 0 ­3 0 1 0 0 0 0 0 0 0
State A 2002 2004 0 ­2 0 0 1 0 0 0 0 0 0
State A 2003 2004 0 ­1 0 0 0 1 0 0 0 0 0
State A 2004 2004 1 0 0 0 0 0 1 0 0 0 0
State A 2005 2004 1 1 0 0 0 0 0 1 0 0 0
State A 2006 2004 1 2 0 0 0 0 0 0 1 0 0
State A 2007 2004 1 3 0 0 0 0 0 0 0 1 0
State A 2008 2004 1 4 0 0 0 0 0 0 0 0 1
State A 2009 2004 1 5 0 0 0 0 0 0 0 0 1
State B 2000 2005 0 ­5 1 0 0 0 0 0 0 0 0
State B 2001 2005 0 ­4 1 0 0 0 0 0 0 0 0
State B 2002 2005 0 ­3 0 1 0 0 0 0 0 0 0
State B 2003 2005 0 ­2 0 0 1 0 0 0 0 0 0
State B 2004 2005 0 ­1 0 0 0 1 0 0 0 0 0
State B 2005 2005 1 0 0 0 0 0 1 0 0 0 0
State B 2006 2005 1 1 0 0 0 0 0 1 0 0 0
State B 2007 2005 1 2 0 0 0 0 0 0 1 0 0
State B 2008 2005 1 3 0 0 0 0 0 0 0 1 0
State B 2009 2005 1 4 0 0 0 0 0 0 0 0 1
State C 2000 . 0 . 0 0 0 0 0 0 0 0 0
State C 2001 . 0 . 0 0 0 0 0 0 0 0 0
State C 2002 . 0 . 0 0 0 0 0 0 0 0 0
State C 2003 . 0 . 0 0 0 0 0 0 0 0 0
State C 2004 . 0 . 0 0 0 0 0 0 0 0 0
State C 2005 . 0 . 0 0 0 0 0 0 0 0 0
State C 2006 . 0 . 0 0 0 0 0 0 0 0 0
State C 2007 . 0 . 0 0 0 0 0 0 0 0 0
State C 2008 . 0 . 0 0 0 0 0 0 0 0 0
State C 2009 . 0 . 0 0 0 0 0 0 0 0 0
State D 2000 2007 0 ­7 1 0 0 0 0 0 0 0 0
State D 2001 2007 0 ­6 1 0 0 0 0 0 0 0 0
State D 2002 2007 0 ­5 1 0 0 0 0 0 0 0 0
State D 2003 2007 0 ­4 1 0 0 0 0 0 0 0 0
State D 2004 2007 0 ­3 0 1 0 0 0 0 0 0 0
State D 2005 2007 0 ­2 0 0 1 0 0 0 0 0 0
State D 2006 2007 0 ­1 0 0 0 1 0 0 0 0 0
State D 2007 2007 1 0 0 0 0 0 1 0 0 0 0
State D 2008 2007 1 1 0 0 0 0 0 1 0 0 0
State D 2009 2007 1 2 0 0 0 0 0 0 1 0 0
Example provided in Clarke and Tapia Schythe (2020).
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A stylized example of such a setting is provided in Table 2.2. We consider four
states forming a balanced panel of years from 2000­2009. TheEvents variable occurs
at different times in different states, and in the case of one state, does not occur. Here
both four lags and four leads are included, such that J = K = 4. Lag and Lead 4
(exclusively) are switched on for periods in which the “Time to Event” exceeds 4 lags
or leads respectively.

States in which the event never occurs (such as State C in Table 2.2) act as pure
controls. These units have 0s in all lag and lead terms, and act as the counterfactual
on which the estimation of impacts is based. Differences between these pure controls
states and states which adopt the event of interest are anchored at 0 in the omitted base
period, ie the first lag in equation 2.24. Hence, lags and leads capture the difference
between treated and control states, compared to the prevailing difference in the omitted
base period. Unbiased estimation of post­event treatment effects thus relies fundamen­
tally on the so called “parallel trends assumption”. In the absence of treatment, it is
assumed that treated and control states would have maintained similar differences as
in the baseline period. For this reason, these models have been demonstrated to be
under­identified, or identified only up to a linear trend, when all units adopt treatment
at some point in time (Schmidheiny and Siegloch, 2019; Borusyak and Jaravel, 2018).
Schmidheiny and Siegloch (2019) show that in this case, it is necessary to bin lags and
leads beyond certain maximum lag (J) and lead (K) periods.

The panel event study is an extension of the standard two­way fixed effect (some­
times called difference­in­differences) model, where a single “Post Event” indicator is
included for all periods posterior to the occurrence of the event in treated states. This
is simply:

yst = α + βPostEventst + µs + λt +X 1
stΓ + εst, (2.29)

where following the notation from (2.25)­(2.28), PostEventst = 1[t ě Events]. Esti­
mation of event specification 2.24 provides two key pieces of information not observ­
able in this single­coefficient model. Firstly, the full set of event leads allows for the
inspection of parallel trends in the pre­treatment period. While this does not provide
evidence that the units in which the event was adopted and not adopted would have
necessarily followed similar trends in the post­reform period (Kahn­Lang and Lang,
2019) (which is the identifying assumption of these models), if trends in treated and
untreated areas were not parallel even pre­event, it is unlikely that they would be par­
allel post­event. Secondly, the policy lags allow for inspection of the temporal nature
of treatment effects, noting for example, any dynamics in the appearance of effects, eg
growing or shrinking over time, and whether effects are transitory or permanent.
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But it’s not so easy…

While the results from papers such as Goodman­Bacon (2021) suggest that the es­
timation of panel event studies resolves concerns owing to heterogeneity in treatment
effects and staggered adoption designs, results from Sun and Abraham (2021) sug­
gest that specific types of heterogeneity concerns remain even in panel event study
models. In particular, they note undesired weighting of treatment effects if there is
heterogeneity across treatment groups in particular lag and lead terms. In particiular,
they are concerned with heterogeneity in treatment effects across “cohorts”, where co­
horts refers to units which share a common treatment adoption date. In their results
they assume no homogeneity of impacts over time since treatment, and also allow the
effects to vary across treatment cohorts, so their application allows considerable het­
erogeneity – as is likely observed in most cases of staggered adoption12 in the real
world. Their paper uses as the basic building block the notion of a “Cohort Average
Treatment Effect on the Treated”, which for each cohort (adoption group), is defined
as:

CATTe,l = E[Y 1
i,e+l ´ Y 0

i,e+l|Ei = e].

Here e refers to the adoption period, denoted for each unit as Ei, and l refers to a rela­
tive treatment lag or lead. For example, for a group such as State A in Table 2.2 which
adopted treatment in year 2001, and for whom we wanted to calculate the impact of
treatment in Year 2005, this would be defined asCATT2001,4 = E[Y 1

i,2005´Y 0
i,2005|Ei =

2001]. Here the notation Y 1 and Y 0 refers to the standard potential outcome frame­
work, which is adapted here to the format used throughout these notes. ThisCATT , if
estimable, is a relevant parameter, as it can be used to consider many questions, such
as for a given adoption cohort, how do treatment effects respond to policies over time,
and similarly, one could weight the CATTs across adoption cohorts to generate some
sort of aggregate time path treatment effect, which is what we desire to capture in the
baseline standard event study design described previously.

One of the key results from Sun and Abraham (2021) is that even under a parallel
trends assumption and a no anticipation assumption in which treated units and control
units follow similar trends prior to treatment, if there is heterogeneity in treatment
effects across cohorts, then the coefficients on the lags and leads in event studies such
as 2.24 will not recover a weighted estimate of CATTs for this lag or lead length.
Instead, they will be partially contaminated by treatment effects from other lags and

12Sun and Abraham (2021) refer to an “absorbing design” which implies that units can adopt treat­
ments at different tines, and once units adopt treatment, they remain treated thereafter. This is equivalent
to the sttagered adoption nomenclature used in these notes.
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leads. Specifically, they note that for a specific lag, say generically j in 2.24, we have
that:

βj =
ÿ

e

ωe,jCATTe,j +
ÿ

j1‰j,j1ě0

ÿ

e

ωe,j1CATTe,j1 , (2.30)

where ω are weights which sum to 1 in the case of the first term ωe,j , and which sum
to zero in the case of the second term ωe,j1 .13 Note that this formula is actually a
simplification of the formula presented as Sun and Abraham (2021, eq. 16), given
that here I am assuming that each treatment lag and lead are a single period, (a fully
dynamic specification). Nevertheless, a fundamental take away here is that treatment
lags or leads are not simply capturing some weighted average of CATTs of interest for
each treatment cohort (at lag or lead j), which is what would be recovered if βj simply
equaled the first term in equation 2.30, but rather also is contaminated by CATTs from
other relative periods j1.

A key implication of this is that not only will it be complicated to understand ex­
actly what the empirical content is of a specific post­treatment lag or lead in standard
event studies, but also that standard pre­treatment tests of stability of coefficients from
event studies may not actually allow us to examine whether treated and un­treated units
were following indentical trends prior to treatment. This is because both pre­ and post­
treatment indicators suffer from the contamination problem noted in equation 2.30,
unless one is willing to assume away heterogeneity of treatment effects over time.

Fortunately, the authors suggest an alternative specification which does not suffer
from this issue, and additionally which recovers a meaningful set of CATTs for each
post­treatment indicator. This is their “Interaction­weighted (IW) estimator”. This IW
estimator consists of the following 3 steps, laid out at more length in Sun and Abraham
(2021, §4.1):

1. Estimate each CATTe,l for each adoption period in a two­way FE framework,
additionally controlling for relative time indicators for each cohort.

2. Estimate weights for each lag and lead term which assign more importance to
units which make up a larger proportion of each lag and lead

3. Use the weights from 2 and the estimated CATTs from 1 to generate the IW
estimator.

13Sun and Abraham (2021) note that these weights can be estimated simply by regressing a binary
indicator of each specific treatment lag or lead on the same two­way fixed effect model.
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Sun and Abraham (2021) show that the IW estimator is a consistent estimator for the
weighted average of each CATT term, and additionally that it is asymptotically nor­
mal, implying that standard (analytical) variance­covariance estimators to conduct in­
ference, without needing bootstrap or other procedures. Along with Sun and Abraham
(2021)’s IW estimator, the the estimators discussed earlier in this section of de Chaise­
martin and D’Haultfoeuille (2020); Callaway and Sant’Anna (2021) similarly offer
solutions to the issues identified by Sun and Abraham (2021).

A different point related to tests of dynamics, and specifically tests of pre­trends in
the event study and related design is noted by (Roth, 2019). He documents, based on
12 empirical studies published in highly visible economics journals, that often given
imprecision in estimates of pre­treatment coefficients, which manifests as wide confi­
dence intervals, tests of parallel pre­trends may not actually be very powerful. Specifi­
cally, he conducts a simulation exercise, and seeks to determine what the most extreme
linear trend would be that would still “pass” pre­trend tests, in the sense that in 80%
of simulations, all pre­event confidence intervals would include 0. What he finds is
that under this condition, in 7 of the 12 studies considered, the actual bias in estimated
treatment effects would be larger than the estimate itself, and in the other 5 cases, the
bias is still meaningful. He closes this paper with applied recommendations, which
are worth excerpting here:

“I urge researchers to use context­specific economic knowledge to inform
the discussion and analysis of possible violations of parallel trends. Bring­
ing economic knowledge to bear on how parallel trends might plausibly
be violated in a given context will yield stronger, more credible inferences
than relying on the statistical significance of pre­trends tests alone.”
(Roth, 2019, p. 14.)

2.2.6 Other Extensions to Diff­in­Diff Methods

Difference­in­Difference­in­Differences

Difference­in­differences estimates frequently provide a good test for the impact
of some reform. However, what can we do if we think that simply capturing a base­
line difference in treatment and non­treatment areas is not enough? One option is to
extend a the diff­in­diff approach to a diff­in­diff­in­diff (also known as triple differ­
ences, or DDD) approach! This follows the logic of difference­in­differences, however
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estimates the diff­in­diff model for two groups: one which is affected by the reform
and one which isn’t. If the group which is not affected by the reform has any change
over time, this is then substracted from the main diff­in­diff estimate to give a triple
difference estimate.

This estimator is formalised in Olden andMøen (2022), who credit its introduction
to Gruber (1994). Following their notation, consider a reform which arrives to a group
of states, with states indicated as T = 1 when treated, and 0 otherwise. Within treated
and non­treated states, assume there are two groups of individuals, one of whom will
receive treatment in the treated state. This beneficiary group is indicated as B = 1

if individuals are in the beneficiary group (whether or not individuals live in state T ).
Finally, assume there is a pre­ and post treatment period, with Post = 1 (for all states,
untreated or not) in the period when treatment arrives. Olden and Møen (2022) note
that the DDD equivalent to equation 2.6 above is:

yist = β0+β1T+β2B+β3Post+β4(T ¨B)+β5(T ¨Post)+β6(B¨Post)+τ(T ¨B¨Post)+εist,

(2.31)
where the triple difference estimatar is captured by τ . They show this in a parameter­
by­parameter interpretation of equation 2.31, similar to the approach taken in equations
2.7­2.10. This is a relatively straight­forward calculation, but somewhat notationally
cumbersome, and so is left as an activity for you to work through, or can be consulted
in Olden and Møen (2022, p. 5).

Specifically, they show that the triple difference estimator captures:

pτ =
[
(ȲT=1,B=1,Post=1 ´ ȲT=1,B=1,Post=0) ´ (ȲT=0,B=1,Post=1 ´ ȲT=0,B=1,Post=0)

]
(́2.32)[

(ȲT=1,B=0,Post=1 ´ ȲT=1,B=0,Post=0) ´ (ȲT=0,B=0,Post=1 ´ ȲT=0,B=0,Post=0)
]
,(2.33)

which as the name suggests, ismade up of the difference between difference­in­differences
estimates. The first difference­in­differences estimate is captured in the first line, and
is the pre­versus post DD estimate between treated and non­treated states for group B,
while the second DD estimate is for the same difference, but for group A.

Note that if we were to impose the standard parallel trend assumption from our
previous double­difference model, it would be sufficient to identify the causal impact
of policy T based only off the first double difference estimate for group B. However,
if there are non­parallel trends between treated and untreated states for group B, a
causal estimate can still be recovered by using the triple difference estimator provided
that these non­parallel trends are also present in group A. In this sense, the triple
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difference estimator can be considered as using group A to estimate the violation of
standard parallel trends in group B, and substract this bias from the double­difference
estimae forB, thus isolating the causal effect. If parallel trends assumptions are indeed
present between treated and untreated states for groupsA andB, this is entirely fine as
well, as in this case, the first double­difference term in the triple difference (equation
2.32) will capture the treatment effect, while the second difference (equation 2.33) will
be zero, given that the untreated groupB = 0 does not receive treatment in either state.
Given that the triple difference estimator nests the DD estimator when parallel trends
are met in both groups, but also captures a causal effect of treatment if parallel trends is
violated in a similar way in both groups, this leads Olden and Møen (2022) to suggest
that “there is little to lose, and some to gain, by using the triple difference relative to
difference­in­differences”.14

“Fuzzy” Differences­in­Differences

So far, when discussing difference­in­differences and two­way fixed effect meth­
ods, we have assumed that all units of a state receive treatment at a given point in time,
and other states exist which never receive treatment to act as control states. How­
ever, as (de Chaisemartin and D’Haultfoeuille, 2017) lay out, at times it may be that
some treatment is applied, and the share of units receiving treatment may increase
more in certain states than in other states. They call such a case “Fuzzy Differences­
in­Differences”, to distinguish it from the standard “sharp” design. In this case, the
standard method is to calculate the treatment effect by calculating the difference­in­
difference effect of the treatment variable on the outcome of interest, and then scaling
by the impact of the treatment variable on the likelihood that one effectively receives
treatment. Thus, to the degree that treatment does not increase completely, we will
scale up the estimated effect to correct for the fact that only a sample of units were
treated. We will return to such a design in the following section of these notes when
discussing instrumental variables and “local average treatment effects.”

One of the key results from de Chaisemartin and D’Haultfoeuille (2017) is to fully
define the conditions under which this type of estimate will capture an unbiased av­
erage treatment effect, and to characterise the group for which this ATE will hold. In
particular, they note that as well as a parallel trends assumption, we require assump­
tions that:

14However, note that there are conceivably cases where a DD estimator could lead to a causal esti­
mate, while the DDD estimator does not, if parallel trends are met in groupB, but are violated in group
A.
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1. The ATE of units treated at multiple dates must be stable over time

2. When the share of treated units changes over time in control groups, the treat­
ment effect for switchers in both treatment and control groups should be the
same.

A second key contribution is that they propose alternative esitmators which can be
used when the share of treated units in “control” groups is stable over time, and which
no longer rely on these two additional assumptions.

Two­way FEs with Continuous Treatment Variables

So far we have focused on cases where we have a binary treatment versus control
distinction: those individuals who receive treatment can be indicated with Wit = 1,
while control individuals consistently haveWit = 0. However, in practice, treatments
often take on a “dose response”, where rather than switching from 0 to 1 for treated
units, they may switch from 0 to some continuous value, where higher values imply
higher exposure. If we define here Dit as the continuous dose response measure, that
is:

Dit =

$

&

%

0 if unit is untreated in period t

dit if unit is treated in period t,

where d is the continuous value of the Dose received.

A recent paper by Callaway et al. (2021) suggests that it is not simply a case of
estimating the regression

Yit = α + θt + ηi + τDit + εit

to understand the impact of a marginal change in the dose Dit on the outcome Yit, or
an average treatment effect of receiving a particular dose d. Perhaps the key message
from the paper of Callaway et al. (2021) is that to understand causal effects in this set­
ting, one needs to make substantially more demanding assumptions than in the binary
treatment case. For example, they show that if we wish to estimate some parameter
such as ATE(d) = E[Yt(d) ´ Yt(0)], where Yt(d) and Yt(0) simply refer to poten­
tial outcomes under dose d and no dose, we require what they refer to as the “strong
parallel trends assumption”. This assumption states that for all possible values of d,

E[Yt(d) ´ Yt´1(0)] = E[Yt(d) ´ Yt´1(0)|D = d].



66 CHAPTER 2. COUNTERFACTUALS FROM THE REAL WORLD

This is likely a much stronger assumption than standard parallel trends in the binary
case. What it states is that for all observed doses d, the average change across time for
all units had they been assigned treatment (the first term), is the same as the average
change in outcomes across time for all units that effectively experienced that dose (the
term on the right hand side). Specifically, this assumption entirely limits selection into
treatment effects, in the sense that units which effectively received dose d are assumed
to be representative of the impact of d of all other units, including those that received
no dose, those that received some lower dose, and those that received some higher
dose. Under this assumption, Callaway et al. (2021) show that the ATE is identified,
and interestingly, that one can also identify other estimands of interest, such as the
impact of a marginal change in treatment from some value dj´1 to dj .

Loosening the Parallel Trends Assumption

So far we have laid out the importance of the parallel trends assumption, but not
discussed what one should do if it seems unlikely that the parallel trends assumption is
met. One way forward in this case is Rambachan and Roth (2019)’s “AMore Credible
Approach to Parallel Trends”. This method takes as a baseline case the panel event
study (though note that their framework also apply to methods such as Callaway and
Sant’Anna (2021); Sun and Abraham (2021)), and propose a way for researchers to
loosen the parallel trends assumption. In short, their suggestion is that rather than
assuming that parallel trends hold exactly, leading to point estimated treatment effects,
we could allow for there to be different violations of (unobservable) post­treatment
counterfactual trends between treated and control units, where these differences are
informed by observed pre­treatment trends between these groups. They suggest that
instead of dogmatically assuming that parallel trends are exactly equal to zero, we
can allow parallel trends to be violated over some specific range. The cost of this
increased flexibility, and realism, in the parallel trends assumption is that instead of
resulting in exactly estimated treatment effects, it results in partially indentified (or
bounds) estimates.

While a technically demanding paper, the logic of Rambachan and Roth (2019)
is very intuitive: given the importance of parallel trends to unbiasedness in DD esti­
mates, and given that we can never formally prove parallel trends, it makes sense to
consider how the estimates would look under a range of assumptions which are simi­
lar in style to parallel trends, but leave slightly more room for movements around this
very specific assumption. What’s more, while this procedure can be conducted for a
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specific treatment effect or post­event coefficient, it can similarly be run on all post­
event coefficients in event study style models, and analogous dynamic models. The
paper provides a clear section on practical guidance for empirical applications, and the
authors provide code (currently available only in R).

2.3 Synthetic Control Methods

2.3.1 “Classic” Synthetic Control

If, despite all our best efforts with differences­in­differences, event studies, or even
triple differences, we do not manage to satisfy ourselves that parallel trends are met,
fortunately all hope is not yet lost. One way to proceed even in the absence of parallel
trends is by using synthetic control methods. These synthetic control methods aim
to construct a “synthetic” (ie statistically produced) control unit for comparison with
the true treatment unit. The synthetic control group is—similar to matching—formed
using a subset of all potential controls, which are also known as donor units. These
donor units are combined in a manner to track as closely as possible the trend in the
true treatment group in the pre­reform periods. The logic behind the method is to
form a comparison group as similar as possible to the control group considering only
the pre­treatment data, and observe what happens once the treatment has taken place.
If the synthetic control is a good match with the treatment group, all else constant,
they should follow identical paths in the post­reform period. However, given that only
the treatment group is affected by treatment receipt, we infer that any post­treament
divergence in trends is due to the receipt of treatment itself. These methods, first
discussed in Abadie and Gardeazabal (2003) were formalised in Abadie et al. (2010),
whose exposition we follow below.

Graphically, figure 2.5 provides an example of the synthetic control process. In
panel (a), we observe that outcomes in the treatment area (California) clearly diverge
from those in the rest of the USA well before treatment occurs, and this divergence oc­
curs in a way which violates the parallel trend assumption. However, in figure (b), we
see that when a “synthetic control” is formed, this synthetic control group tracks the
true outcomes in the treated area very well in the pre­reform period, however only di­
verges post­reform. It is this post­reform divergence that we interpret as our treatment
effect.
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Figure 2.5: Synthetic Controls and Raw Trends (Figures 1­2 fromAbadie et al. (2010))
Abadie, Diamond, and Hainmueller: Synthetic Control Methods for Comparative Case Studies 499

programs in the 1989–2000 period and they are excluded from
the donor pool. We also discard all states that raised their state
cigarette taxes by 50 cents or more over the 1989 to 2000 pe-
riod (Alaska, Hawaii, Maryland, Michigan, New Jersey, New
York, Washington). Notice that, even if smaller tax increases
substantially reduced smoking in any of the control states that
gets assigned a positive weight in the synthetic control, this
should if anything attenuate the treatment effect estimate that
we obtain for California. Finally, we also exclude the District
of Columbia from our sample. Our donor pool includes the
remaining 38 states. Our results are robust, however, to the in-
clusion of the discarded states.

Our outcome variable of interest is annual per capita ciga-
rette consumption at the state level, measured in our dataset as
per capita cigarette sales in packs. We obtained these data from
Orzechowski and Walker (2005) where they are constructed us-
ing information on state-level tax revenues on cigarettes sales.
This is the most widely used indicator in the tobacco research
literature, available for a much longer time period than survey-
based measures of smoking prevalence. A disadvantage of tax-
revenue-based data relative to survey data on smoking preva-
lence is that the former are affected by cigarette smuggling
across tax jurisdictions. We discuss this issue later in this sec-
tion. We include in X1 and X0 the values of predictors of
smoking prevalence for California and the 38 potential con-
trols, respectively. Our predictors of smoking prevalence are:
average retail price of cigarettes, per capita state personal in-
come (logged), the percentage of the population age 15–24, and
per capita beer consumption. These variables are averaged over
the 1980–1988 period and augmented by adding three years of
lagged smoking consumption (1975, 1980, and 1988). Appen-
dix A provides data sources.

Using the techniques described in Section 2, we construct
a synthetic California that mirrors the values of the predictors
of cigarette consumption in California before the passage of
Proposition 99. We estimate the effect of Proposition 99 on per
capita cigarette consumption as the difference in cigarette con-
sumption levels between California and its synthetic versions
in the years after Proposition 99 was passed. We then perform a
series of placebo studies that confirm that our estimated effects
for California are unusually large relative to the distribution of
the estimate that we obtain when we apply the same analysis to
the states in the donor pool.

3.3 Results

Figure 1 plots the trends in per capita cigarette consumption
in California and the rest of the United States. As this figure
suggests, the rest of the United States may not provide a suit-
able comparison group for California to study the effects of
Proposition 99 on per capita smoking. Even before the passage
of Proposition 99 the time series of cigarette consumption in
California and in the rest of the United States differed notably.
Levels of cigarette consumption were similar in California and
the rest of the United States in the early 1970s. Trends began to
diverge in the late 1970s, when California’s cigarette consump-
tion peaked and began to decline while consumption in the rest
of the United States was still rising. Cigarette sales declined in
the 1980s, but with larger decreases in California than in the rest
of the United States. In 1988, the year Proposition 99 passed,
cigarette consumption was about 27% higher in the rest of the

Figure 1. Trends in per-capita cigarette sales: California vs. the rest
of the United States.

United States relative to California. Following the law’s pas-
sage, cigarette consumption in California continued to decline.
To evaluate the effect of Proposition 99 on cigarette smoking
in California, the central question is how cigarette consumption
would have evolved in California after 1988 in the absence of
Proposition 99. The synthetic control method provides a sys-
tematic way to estimate this counterfactual.

As explained above, we construct the synthetic California as
the convex combination of states in the donor pool that most
closely resembled California in terms of pre-Proposition 99 val-
ues of smoking prevalence predictors. The results are displayed
in Table 1, which compares the pretreatment characteristics of
the actual California with that of the synthetic California, as
well as with the population-weighted average of the 38 states
in the donor pool. We see that the average of states that did not
implement a large-scale tobacco-control program in 1989–2000
does not seem to provide a suitable control group for Califor-
nia. In particular, prior to the passage of Proposition 99 average
beer consumption and cigarette retail prices were lower in the
average of the 38 control states than in California. Moreover,
prior to the passage of Proposition 99 average cigarette sales
per capita were substantially higher on average in the 38 con-

Table 1. Cigarette sales predictor means

California
Average of

Variables Real Synthetic 38 control states

Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15–24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81

NOTE: All variables except lagged cigarette sales are averaged for the 1980–1988 period
(beer consumption is averaged 1984–1988). GDP per capita is measured in 1997 dollars,
retail prices are measured in cents, beer consumption is measured in gallons, and cigarette
sales are measured in packs.

(a) No Synthetic Control
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trol states than in California. In contrast, the synthetic Califor-
nia accurately reproduces the values that smoking prevalence
and smoking prevalence predictor variables had in California
prior to the passage of Proposition 99.

Table 1 highlights an important feature of synthetic control
estimators. Similar to matching estimators, the synthetic con-
trol method forces the researcher to demonstrate the affinity be-
tween the region exposed to the intervention of interest and its
synthetic counterpart, that is, the weighted average of regions
chosen from the donor pool. As a result, the synthetic control
method safeguards against estimation of “extreme counterfactu-
als,” that is, those counterfactuals that fall far outside the convex
hull of the data (King and Zheng 2006). As explained in Sec-
tion 2.3, we chose V among all positive definite and diagonal
matrices to minimize the mean squared prediction error of per
capita cigarette sales in California during the pre-Proposition 99
period. The resulting value of the diagonal element of V asso-
ciated to the log GDP per capita variable is very small, which
indicates that, given the other variables in Table 1, log GDP
per capita does not have substantial power predicting the per
capita cigarette consumption in California before the passage
of Proposition 99. This explains the discrepancy between Cali-
fornia and its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the syn-
thetic California. The weights reported in Table 2 indicate that
smoking trends in California prior to the passage of Proposi-
tion 99 is best reproduced by a combination of Colorado, Con-
necticut, Montana, Nevada, and Utah. All other states in the
donor pool are assigned zero W-weights.

Figure 2 displays per capita cigarette sales for California and
its synthetic counterpart during the period 1970–2000. Notice

Table 2. State weights in the synthetic California

State Weight State Weight

Alabama 0 Montana 0.199
Alaska – Nebraska 0
Arizona – Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey –
Connecticut 0.069 New Mexico 0
Delaware 0 New York –
District of Columbia – North Carolina 0
Florida – North Dakota 0
Georgia 0 Ohio 0
Hawaii – Oklahoma 0
Idaho 0 Oregon –
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Iowa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland – Vermont 0
Massachusetts – Virginia 0
Michigan – Washington –
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0

Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

that, in contrast to per capita sales in other U.S. states (shown
in Figure 1), per capita sales in the synthetic California very
closely track the trajectory of this variable in California for the
entire pre-Proposition 99 period. Combined with the high de-
gree of balance on all smoking predictors (Table 1), this sug-
gests that the synthetic California provides a sensible approxi-
mation to the number of cigarette packs per capita that would
have been sold in California in 1989–2000 in the absence of
Proposition 99.

Our estimate of the effect of Proposition 99 on cigarette con-
sumption in California is the difference between per capita ciga-
rette sales in California and in its synthetic version after the pas-
sage of Proposition 99. Immediately after the law’s passage, the
two lines begin to diverge noticeably. While cigarette consump-
tion in the synthetic California continued on its moderate down-
ward trend, the real California experienced a sharp decline. The
discrepancy between the two lines suggests a large negative ef-
fect of Proposition 99 on per capita cigarette sales. Figure 3
plots the yearly estimates of the impacts of Proposition 99, that
is, the yearly gaps in per capita cigarette consumption between
California and its synthetic counterpart. Figure 3 suggests that
Proposition 99 had a large effect on per capita cigarette sales,
and that this effect increased in time. The magnitude of the es-
timated impact of Proposition 99 in Figure 3 is substantial. Our
results suggest that for the entire 1989–2000 period cigarette
consumption was reduced by an average of almost 20 packs per
capita, a decline of approximately 25%.

In order to assess the robustness of our results, we included
additional predictors of smoking prevalence among the vari-
ables used to construct the synthetic control. Our results stayed
virtually unaffected regardless of which and how many predic-
tor variables we included. The list of predictors used for robust-
ness checks included state-level measures of unemployment,
income inequality, poverty, welfare transfers, crime rates, drug
related arrest rates, cigarette taxes, population density, and nu-
merous variables to capture the demographic, racial, and social
structure of states.

(b) Synthetic Control

The process of forming a synthetic control consists of assigning weights to po­
tential control areas in such a manner to optimise pre­reform levels in the outcome
variable. Following Abadie et al. (2010) we consider J + 1 regions, one of which
receives treatment, which we arbitrarily call region 1. The goal in synthetic control
methods is to form a J ˆ 1 vector W = (w2, . . . , wJ+1)

1 for which wj ě 0 @j, and
w2 + . . . + wJ+1 = 1. These weights are chosen so that they only use information
prior to the reform of interest, and they ensure that all pre­reform average outcomes
and controls are equalised between the treatment unit and the synthetic control unit.
For example, in Abadie et al. (2010)’s example above, 5 of the potentially 49 donor
states are given positive weights, while the remaining 44 states are given no weight,
resulting in a near perfect fit in trends prior to the reform (figure 2.5b).

Assuming that these weights can be formed, this then suggests a reasonably simple
way to calculate a treatment effect. We simply subtract from the post­reform outcome
in the treatment state the weighted average of the post­reform controls in the synthetic
control states:

pα1t = Y1t ´

J+1
ÿ

j=2

w˚
j Yjt.

Note that in the above t refers only to post­reform periods. The existence of weights
for estimation in particular requires that all pre­treatment outcomes and controls of
interest in the treatment state are contained in a “convex hull” of the outcomes of the
donor states, or that the values of the treatment state aren’t universally higher or lower
than those in all the donor states. We return to discuss what to do in the case this does
not hold at the end of this section.
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This idea captures the spirit of diff­in­diff methods, however rather than having to
subtract the pre­reform difference from the post reform difference, the synthetic control
ensures that the pre­reform difference is equal to zero. In order to actually implement
this method, the question remains of how to calculate these weights. As Abadie et al.
(2010) show, this can be treated as a problem of minimising the Euclidean norm (or
roughly, the total average distance in many dimensions), as described below, where V
is a semi­definite positive matrix:

}X1 ´́́ X0W }V =
a

(X1 ´́́ X0W )1V (X1 ´́́ X0W ).

The full details of the weighting process, and indeed the estimator, are available in
Abadie et al. (2010). What’s more, the authors have made libraries available to imple­
ment this process in R, MATLAB and Stata, all available online.

One question when applying synthetic control methods is precisly which variables
should be used when seeking to match across matricesX1 andX0. One paper which
touches on this is Ferman et al. (2020). There, the authors suggest that there is no
broad consensus on this question on this in theoretical or applied work. They docu­
ment quite varied practice in published papers using synthetic control methods, with
papers typically using some type of pre­treatment outcomes, though not necessarily
all pre­treatment periods, and at times additional covariates. What’s more, they sug­
gest that this question is not innocuous, finding in both Monte Carlo simulations and
real empirical examples that different choices in how synthetic controls are generated
can lead to cases where a given intervention or treatment is found to be significant, or
insignificant. Fortunately, this paper makes quite concrete recommendations related
to the practice of synthetic controls. They suggest that synthetic control should use all
pre­treatment periods when generating a match. This has the benefits that it minimizes
the difference between synthetic controls and the treatment unit in the pre­treatment
period, and additionally avoids other arbitrary decisions related to the number of pre­
treatment periods to include. They suggest that the only exception to this is if for some
reason there is a strong prior that specific covariates are required for the generation of
a reasonable synthetic control. Even so, they suggest that should other specifications
be considered, this baseline of using full pre­treatment periods as predictors should
always be documented.

http://web.stanford.edu/~jhain/synthpage.html
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2.3.2 Synthetic Difference­in­differences

Up until recently, where the treatment state had outcomes which were universally
higher or universally lower than the donor states synthetic control methods could not
be used. However, work from Doudchenko and Imbens (2016) extended synthetic
control methods and loosened the estimation requirements. Principally, this allows for
a constant different in levels between the treatment area and the synthetic controls.
Doudchenko and Imbens (2016) document their updated methods using the same case
as Abadie et al. (2010), and also a number of other applied examples.

A particularly flexible estimator, going beyond Doudchenko and Imbens (2016)
is the synthetic DID procedure, hereafter SDID, as developed in Arkhangelsky et al.
(2021). As input, SDID requires a balanced panel ofN units or groups, observed over
T time periods. An outcome, denoted Yit, is observed for each unit i in period t. Some,
but not all, of these observations are treated with a specific variable of interest, denoted
Wit. This treatment variable Wit = 1 if observation i is treated by time t, otherwise,
Wit = 0 indicates that unit i is untreated at time t. Here, we assume that there is
a single adoption period for treated units, which Arkhangelsky et al. (2021) refer to
as a ‘block treatment assignment’. In an appendix, the authors note how this can be
extended to a ‘staggered adoption design’ (Athey and Imbens, 2022), where treated
units adopt treatment at varying points.15 A key element of both of these designs is
that once treated, units are assumed to remain exposed to treatment forever thereafter.
In the particular setting of SDID, no always treated units can be included in estimation.
For estimation to proceed, we require at least two pre­treatment periods off of which
to determine control units.

The goal of SDID is in consistently estimating the causal effect of receipt of policy
or treatment Wit, (an average treatment effect on the treated, ATT) even if we do not
believe in the parallel trends assumption between all treatment and control units on
average. Estimation of the ATT proceeds as follows:

(
pτ sdid, pµ, pα, pβ

)
= argmin

τ,µ,α,β

#

N
ÿ

i=1

T
ÿ

t=1

(Yit ´ µ ´ αi ´ βt ´ Witτ)
2
pωsdid
i

pλsdid
t

+

(2.34)

where the estimand pτ is the ATT, generated from a two­way fixed effect regression,
with optimally chosen weights pωsdid

i and pλsdid
t discussed below. Note that here, this

15The authors provide a computational implementation of SDID in R, available at Hirshberg (Un­
dated). Pailañir and Clarke (2022) extend this code to account for a staggered adoption design (available
for Stata).
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procedure flexibly allows for shared temporal aggregate factors given the estimation
of time fixed effects βt and time invariant unit­specific factors given the estimation of
unit fixed effects αi. The presence of unit­fixed effects implies that SDID will simply
seek to match treated and control units on pre­treatment trends, not both pre­treatment
trends and levels, allowing for a constant difference between treatment and control
units.

In this setting, it is illustrative to consider how the SDID procedure compares to
the traditional synthetic control method of Abadie et al. (2010), as well as the baseline
DID procedure. The standard DID procedure consists of precisely the same two­way
fixed effect OLS procedure, simply assigning equal weights to all time periods and
groups:

(
pτ did, pµ, pα, pβ

)
= argmin

τ,µ,α,β

#

N
ÿ

i=1

T
ÿ

t=1

(Yit ´ µ ´ αi ´ βt ´ Witτ)
2

+

. (2.35)

The synthetic control, on the other hand, maintains optimally chosen units weights ω
(as laid out below), however does not seek to optimally consider time periods via time
weights, and omits unit fixed effects implying that the synthetic control and treated
units should maintain approximately equivalent pre­treatment levels, as well as trends.

(
pτ sc, pµ, pβ

)
= argmin

τ,µ,β

#

N
ÿ

i=1

T
ÿ

t=1

(Yit ´ µ ´ βt ´ Witτ)
2
pωsc
i

+

(2.36)

From equations 2.35­2.36 it is clear that the SDID procedure offers greater flexibility
than both the DID and SC procedures; in the case of DID by permitting a violation
of parallel trends in aggregate data, and in the case of SC, by both additionally seek­
ing to optimally weight time periods when considering counterfactual outcomes, and
allowing for level differences between treatment and control groups.

The selection of unit weights, ω, as inputs to equation 2.34 (and 2.36) seeks to
ensure that comparison is made between control and treatment units which were ap­
proximately following parallel trends prior to the adoption of treatments. The selection
of time weights, λ in the case of SDID seeks to draw more weight from pre­treatment
periods which are more similar to post­treatment periods, in the sense of finding a con­
stant difference between each control unit’s post treatment average, and pre­treatment
weighted averages across all selected controls. Specifically, as laid out in Arkhangel­
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sky et al. (2021), unit­specific weights are found by resolving:

(
pω0, pωsdid

)
= argmin

ω0PR,ωPΩ

Tpre
ÿ

t=1

(
ω0 +

Nco
ÿ

i=1

ωiYit ´
1

Ntr

N
ÿ

i=Nco+1

Yit

)2

+ ζ2Tpre||ω||22

(2.37)
where

Ω =

#

ω P RN
+ , with

Nco
ÿ

i=1

ωi = 1 and ωi =
1

Ntr

for all i = Nco + 1, . . . , N

+

,

and ζ is a regularization parameter laid out in Arkhangelsky et al. (2021, pp. 4091­
4092).This leads to a vector ofNco weights plus an intercept ω0. The weights ωi for all
i P t1, . . . , Ncou imply that absolute difference between control and treatment trends
units should be minimized over all pre­treatment periods, while ω0 initially allows
for a constant difference between treatment and controls over time. Together, these
imply that units will follow parallel pre­trends, though provided ω0 ‰ 0, not identical
pre­trends.

In the case of time weights, a similar procedure is followed, finding weights which
minimize the following objective function:

(
pλ0, pλsdid

)
= argmin

λ0PR,λPΛ

Nco
ÿ

i=1

(
λ0 +

Tpre
ÿ

i=1

λtYit ´
1

Tpost

T
ÿ

t=Tpre+1

Yit

)2

+ ζ2Nco||λ||2

(2.38)
where

Λ =

#

λ P RT
+, with

Tpre
ÿ

t=1

λt = 1 and λt =
1

Tpost

for all t = Tpre + 1, . . . , T

+

,

and the final component in 2.38 is a very small regularization term to ensure uniqueness
of time weights.

This estimation procedure is summarized in Arkhangelsky et al. (2021, algorithm
1). The authors also prove that the estimator is asymptotically normal and centred on

zero, suggesting that confidence intervals on τ can be constructed as pτ sdid ˘ zα/2

b

pVτ ,
where zα/2 refers to the inverse normal density function at percentile α/2 should one
wish to compute 1­α confidence intervals. These confidence intervals thus simply re­
quire an estimate of the variance of τ , pVτ , and they propose three specific procedures to
estimate this variance: via bootstrap, jackknife, or placebo. While we won’t delve into
this too deeply here (it is available in algorithms 2­4 of Arkhangelsky et al. (2021)),
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note that these are all computationally based resampling or placebo­based estimation
procedures, and so in practice simply consist of re­estimating pτ sdid over many resam­
ples of data, or over permutations of the treatment variable, and observing the variance
of these many re­estimates.
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Empirical Exercise 2: Suffrage and Child Survival

Instructions: In this exercise will examine the paper “Women’s Suffrage, Political
Responsiveness, and Child Survival in American History”, by Miller (2008).
We will first replicate the (flexible) difference­in­differences results examining
the effect of women gaining the vote on child health outcomes using the dataset
Suffrage.dta compiled from Grant Miller’s website. We will then examine the
importance of correct inference in a difference­in­difference framework, by exam­
ining various alternative standard error estimates both capturing and not­capturing
the dependence of errors over time by state.

Questions:
(A) Replication of Principal Results

1. Replicate the results in table IV of the paper, following equation 1, as well as
the notes to the table. [Note that in a small number of specifications you may
find slightly different standard errors using this version of the data.]

2. Plot figure IV (and see below) from the paper using the same dataset for male
and female mortality in each of the age groups displayed. Refer to the dis­
cussion on page 1306­1307 of Miller (2008) for details on calculations. This
figure is based on average regression residuals for each year, and as you will
likely remember, these regression residuals are calculated as ε̂ = y ´ Xβ̂.
These can be calculated in Stata following a regression by using the com­
mand predict varname, resid.

Replication of Figure IV of Miller (2008)
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(B) Examination of Some Details Related to Inference For parts 1­3 of the below
question, it is only necessary to report the p­values associated with each estimate
(considering the null hypothesis that the coefficient on suffrage is equal to 0. In part
4, we are interested in the 95% confidence intervals of the estimate.

1. Replicate the results from table IV, however without using standard errors
clustered by state.

2. Replicate the results from table IV using standard errors robust to het­
eroscedasticity

3. Re­estimate the results from table IV using wild bootstrap standard errors.
This could be done using the user­written ado boottest which can be in­
stalled in Stata using ssc install boottest. If doing so, I suggest using
the “noci” option of boottest.

4. Create a graph showing two sets of 95% confidence intervals for each estimate
displayed in table IV: the first using clustered standard errors and the second
using the uncorrected standard errors from point 1 above. Ensure to indicate
where zero lies on the graph to determine which estimates are statistically
distinguished from 0 at 95% in each case.

https://ideas.repec.org/c/boc/bocode/s458121.html
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Chapter 3

Estimation with Local Manipulations:
LATE and Regression Discontinuity

Required Readings
Imbens and Wooldridge (2009): Sections 6.3 and 6.4
Angrist and Pischke (2009): Chapter 4.1, 4.4, 4.5 (LATE) and Chapter 6 (RD)
Lee and Lemieux (2010): RD

Suggested Readings
Imbens and Angrist (1994)
Angrist et al. (2010)
Dobbie et al. (2018)
Lundborg et al. (2017)
Bharadwaj et al. (2013)
Clots­Figueras (2012)
Brollo and Troiano (2016)
Angrist and Lavy (1999)
Kazianga et al. (2013)
Fujiwara (2015)

In this section we will begin by returning to the relationship between what we have
called unconfoundedness and the zero­conditional mean assumption that we used to
define the exogeneity of our regressors in earlier econometrics courses when working
with OLS. To do so, let’s start with the Rubin causal model. Our workhorse example

77
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consists of potential outcomes,

y0i = µ0 + βxi + e0i (3.1)

y1i = µ1 + βxi + e1i (3.2)

and an assignment mechanism forWi, which may depend on the values of X and e.

Given a set of observed variables (yi, xi, wi), we can translate this into an estimable
equation via the identity of the switching regression. But the ‘right’ way to write down
this regression depends on what it is we are trying to estimate. Suppose first that we
are interested in estimating the ATE. This is given by µ1 ´ µ0, the average difference
between potential outcomes in the entire population. Writing

yi = µ0 + (µ1 ´ µ0)
loooomoooon

τ̂ATE

wi + βxi + (e1i ´ e0i)wi + e0i
looooooooomooooooooon

eATE
i

, (3.3)

we can clearly see the requirement of exogeneity. We requirewi to be uncorrelatedwith
the compound error term eATE

i . This requires unconfoundedness as we have defined
it: wi must be uncorrelated with both potential outcomes, y1i, y0i.1

Notice that if we were willing to assume that everyone had the same treatment
effect, then e1i ´ e0i = 0, for all i, so in a constant effects model we can estimate
the ATE even if we only have independence of wi from e0i. But if we are not willing
to assume a constant effects model, then in general the ATT and the ATE will not
coincide. If instead we are interested in estimating the ATT, then the expected value
of E[e1i ´ e0i|Wi = 1] is part of what we want to study. If the treated benefit more (or
less) than the average member of the population, than this should be reflected in our

1A brief description of why unconfoundedness satisfies this requirement is as follows. Unconfound­
edness gives us (by definition) that E[e1i|wi] = 0 and that E[e0i|wi] = 0. Our challenge is to show
that this implies the zero conditional mean assumption, namely, that E[eATE

i |wi] = 0, where eATE
i is

defined as in equation (3.3) as

eATE
i = (e1i ´ e0i)wi + e0i = e1iwi ´ e0iwi + e0i. (3.4)

The expected value of the third term is zero by assumption, leaving us with the first two terms. We will
show that E[e1iwi|wi] = 0; the other follows by symmetry.
Take the case where wi = 1. Then:

E[e1iwi|wi = 1] = E[e1i1|wi = 1] = E[e1i] = 0, (3.5)

where the second equality follows from the unconfoundedness assumption. Alternatively whenwi = 0,

E[e1iwi|wi = 0] = E[e1i0|wi = 0] = 0, (3.6)

which completes the proof.
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estimate of the ATT. In this case let us write

yi = µ0 + (µ1 ´ µ0) + (e1i ´ e0i)
looooooooooooomooooooooooooon

τ̂ATT

wi + βxi + e0i
loomoon

eATT
i

. (3.7)

From this we can see that the exogeneity assumption required for regression to provide
an unbiased estimate of the ATT is weaker than for the ATE. We require only thatwi is
uncorrelated with e0i, but not with e1i. All of this leads us to the fact that unconfound­
edness gives the zero conditional mean assumption that has traditionally been used to
define exogeneity.

This is all well and good, but in the absence of a randomized, controlled trial, argu­
ing for the assumption of unconfoundedness is often an uphill battle. We are therefore
interested in what ways we can estimate the causal effects of a program under weaker
assumptions. In what follows we will consider two cases where we can estimate a
causal treatment effect locally (that is to say for some specific group), but not glob­
ally. We will first consider the case of instrumental variables and treatment effects,
and then move on to regression discontinuity methods.

3.1 Instruments and the LATE

To understand the use of instrumental variables to estimate treatment effects, we
return to our simplest case of potential outcomes without covariates:

y0i = µ0 + e0i (3.8)

y1i = µ1 + e1i.

We will begin by assuming homogenous treatment effects. Let e0i = e1i = ei for all
individuals i. The resulting empirical specification is now

yi = µ0 + (µ1 ´ µ0)
loooomoooon

τ

wi + ei. (3.9)

If unconfoundedness holds, we can use OLS to estimate the parameter τ , which gives
the ATE (equivalent to the ATT in this case). But what if unconfoundedness fails?
Then the correlation between ei, wi means we have a (now familiar) endogeneity prob­
lem.



80 CHAPTER 3. ESTIMATION WITH LOCAL MANIPULATIONS

3.1.1 Homogeneous treatment effects with partial compliance: IV

In the case of homogeneous treatment effects, you are likely already familiar with
one way of addressing this problem: instrumental variables. Suppose we have an
instrument, z, that affects the likelihood of an individual receiving the treatment, w,
but has no direct effect on the outcome of interest. Such an instrument will satisfy the
exclusion restriction and rank condition required for standard instrumental variables
estimation (Wooldridge, 2002, chapter 6).

The paradigmatic example of this is a randomized, controlled trial with imperfect
compliance. Individuals may be assigned at random to treatment and control arms of
the trial, but it is possible that some of those assigned to treatment may not undertaken
the treatment, and some of those assigned to control arms may end up getting the
treatment. In this case, so long as the initial assignment was truly random and has some
power over which treatment people end up receiving, it can be used as an instrument.
There are several ways to implement such an instrumental variables approach, which
we examine below in turn.

(i) Two­stage least squares Two­stage least squares combines our causal model for
the outcome,

yi = µ0 + τwi + ei (3.10)

with a first­stage regression that is a linear projection of the treatment on the instru­
ment:

wi = γ0 + γzzi + vi. (3.11)

Substituting the predicted values of wi, ŵi, from the first­stage regression into the
second stage regression gives

yi = µ0 + τ 2SLSŵi + ui. (3.12)

where τ 2SLS consistently estimates the ATE. As usual, doing this in two stages by hand
does not correct standard errors for the use of a constructed regressor, but these can be
obtained directly by use of Stata’s ivregress or related commands.

(ii) Indirect least squares It is also useful to understand that the 2SLS estimate can
be reproduced from a pair of ‘reduced­form’ regressions. In particular, consider esti­

http://www.stata.com/manuals13/rivregress.pdf
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mation of equation (3.11) together with the reduced form

yi = π0 + πzzi + ηi. (3.13)

Now, recall the properties of the 2SLS estimator that τ is equal to the ratio of the
covariances

τ IV =
cov(y, z)
cov(w, z)

(3.14)

=
cov(y, z)/v(z)
cov(w, z)/v(z)

. (3.15)

The second line follows just from dividing both numerator and denominator by the
same quantity, the variance of z. This is helpful because the numerator and denomi­
nator are exactly what is estimated by the regression coefficients on zi in the reduced­
form and first­stage equations, respectively. That is, πz = cov(y, z)/v(z), and γz =

cov(w, z)/v(z). So, an indirect squares approach to estimating τ is to estimate the two
reduced­form coefficients, and then take their ratio.

(iii) Wald estimator In the special case where our instrument is binary, equation
(3.15) has a particularly useful interpretation. Notice that if z is binary, then the coeffi­
cient on this variable in the reduced­form regressions will give us the simple difference
in means:

πz = E[y|z = 1] ´ E[y|z = 0]

γz = E[w|z = 1] ´ E[w|z = 0].

Substituting these values into the ratio for indirect least squares (equation 3.15) gives
theWald estimator

τWALD =
E[Yi|Zi = 1] ´ E[Yi|Zi = 0]

E[Wi|Zi = 1] ´ E[Wi|Zi = 0]
(3.16)

where τ estimates the ATE (=ATT, since we are still maintaining the assumption of
homogeneous treatment effects). This is an application of a standard interpretation
of instrumental variables to the case of a binary instrument; see Angrist and Pischke
(2009) and Imbens and Wooldridge (2009) for discussion.

Once we relax the (strong!) assumption of homogeneous treatment effects, how­
ever, we can no longer interpret IV estimates as estimating ‘the’ treatment effect. In
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fact, IV will not necessarily give us either the ATE or the ATT!

3.1.2 Instrumental variables estimates under heterogeneous treat­
ment effects

When treatment effects may be heterogeneous—and there is often little reason to
rule this out a priori—and compliance with randomization into treatment is imperfect,
the situation becomes considerably more complicated. It is now only under special
conditions that we can estimate even the ATT (let alone the ATE).

In this context, in order to be able to interpret IV estimates as giving average treat­
ment effect for some subpopulation, we will need stronger assumptions than are typi­
cally made in a homogeneous­effects IV world. This requires us to expand our poten­
tial outcomes notation, to be explicit about the effect of the instrument on treatment
status and outcomes.

The possibility of noncompliance leads to an alternative measure of the treatment
effect. Suppose we want to know what is the total benefit of our randomly assigned
instrument. In many cases this may be the actual intervention: e.g., Z could be a
conditional cash transfer program, and W could be schooling, Y a socio­economic
outcome of interest.

Since our costs are associated with implementing Z, we may want to know the
average benefit of those who receive Z = 1. This is the ITT:

Definition 1. Intent­to­Treat effect

The ITT is the expected value of the difference in outcome, Y , between the popu­
lation randomly assigned to treatment statusW = 1 (but who may not have ended up
with that status) and those who were not:

ITT = E[Yi|Zi = 1] ´ E[Yi|Zi = 0]. (3.17)

A useful result, due to Bloom (1984), relates the ITT to the ATT under the additional
assumption that there is no defiance, that is, that Pr[Wi = 1|Zi = 0] = 0:

ITT = ATT ˆ c, (3.18)
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where c is the compliance rate, c = Pr[Wi = 1|Zi = 1]. This follows intuitively from
the independence of Zi and potential outcomes (so that it is uncorrelated with Y0).

3.1.3 IV for noncompliance and heterogeneous effects: the LATE
Theorem

Under imperfect compliance, we have two potential outcomes in terms of W , for
any given value of the instrument Z. For the two possible values of Zi P t0, 1u,
we define (W0i,W1i) as the corresponding potential outcomes in terms of realised
treatment status. We can then write

Wi = W0i(1 ´ Zi) +W1i(Zi). (3.19)

Notice also that the outcome variable may conceivably depend on on both treat­
ment status and the value of the instrument. Let us denote by Yi(W,Z) the potential
outcome for individual i with treatment status W and value of the instrument Z. So
there are now four potential outcomes for each individual, associated with all possible
combinations ofW and Z.

The instrument, Zi, will be valid if it satisfies the unconfoundedness (conditional
mean independence) assumption with respect to the potential outcomes in Y and W .
Formally, we will assume:

Assumption 4. Independence

(Yi(1, 1), Yi(1, 0), Yi(0, 1), Yi(0, 0),W1i,W0i) KK Zi. (3.20)

Independence alone does not guarantee that the causal channel through which the
instrument affects outcomes is restricted to the treatment under study. For this reason,
we add the standard exclusion restriction:

Assumption 5. Exclusion restriction

Yi(w, 0) = Yi(w, 1) ” Ywi (3.21)

for w = 0, 1.

An individual’s treatment status fully determines the value of their outcome, in the
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sense that the instrument has no direct effects.

A standard requirement for instrumental variables, including this case, is one of
power. When IV was introduced, we required the instrument to be partially corre­
lated with the endogenous variable, conditional on the exogenous, included regressors
(Wooldridge, 2002, ch. 5).

Assumption 6. First stage
E[W1i ´ W0i] ‰ 0. (3.22)

Notice that this is a statement about the expected value for the population as a
whole. It does not guarantee that any individual is ‘moved’ by the instrument to change
their treatment status. It does not even guarantee that all individuals are ‘moved’ in the
same direction: some may be induced by the instrument to take up treatment, whereas
they otherwise would not have done so, while others may be induced by the instrument
not to take up treatment, whereas they otherwise would have done so.

For this reason, interpretation of an IV regression as the treatment effect for some
subpopulation requires something stronger than first­stage power alone. In particular,
we require that all individuals in the population are uniformly more (or less) likely to
be treated when they have Zi = 1.

Assumption 7. Monotonicity

W1i ě W0i, @i.

Notice that if the instrument takes the form of a discouragement from taking up
the treatment, we can always define a new variable Z 1

i = (1 ´ Zi), which will satisfy
monotonicity as defined above.

Under these four conditions, instrumental variables estimation will give us a local
average treatment effect—an average treatment effect for a specific subpopulation.
The LATE Theorem (Angrist and Pischke, 2009, p. 155) gives us…

Theorem 2. The LATE Theorem

Let yi = µ0 + τiwi + ei, and let wi = γ0 + γzizi + ηi. Let assumptions 1 ­ 4 hold.
Then

E[Yi|Zi = 1] ´ E[Yi|Zi = 0]

E[Wi|Zi = 1] ´ E[Wi|Zi = 0]
= E[Y1i ´ Y0i|W1i ą W0i]

= E[τi|γzi ą 0]
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See Angrist and Pischke for the proof, which is not reproduced here.

3.1.4 LATE and the compliant subpopulation

The LATE theorem tells us that the Wald/IV estimator provides an unbiased esti­
mate of treatment effects for some subpopulation—the subpopulation for whomW1i ‰

W0i. Who are these people?

The answer, unfortunately, depends on the instrument that we are using, and its
ability to affect the eventual treatment status of individuals in the sample. Relative to
a given instrument, we can categorize individuals in four groups. These are listed in
table 3.1). Notice here, that the assumption of monotonicity rules out the existence of
defiers.

Table 3.1: Compliance types

Group Definition Words

Compliers: W1i = 1,W0i = 0 Participate when assigned to participate,
don’t participate when not assigned to par­
ticipate

Never­takers: W1i = 0,W0i = 0 Never participate, whether assigned to or not
Always­takers: W1i = 1,W0i = 1 Always participate, whether assigned to or

not
Defiers: W1i = 0,W0i = 1 Participate when assigned not to participate,

don’t participate when assigned to participate

Our estimates of the treatment effect will be entirely driven by the compliers. With
IV we estimate a Local Average Treatment Effect: the average treatment effect on the
compliant subpopulation. This implies that IV is not informative for always takers and
for never takers, as the intrument has no power to shift the treatment status for these
groups. Imbens and Angrist (1994, p. 470) make the point that this is analogous to
fixed effects models in panels, where estimates are driven only by units who ‘change’
within the panel, and as such findings are only informative for individuals for whom
the variable of interest changes within the panel.

For this reason we may want to be able to say something about who exactly these
compliers are. Under monotonicity, the size of the compliant sub­population is given
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by the first stage of our IV estimation (Angrist and Pischke, 2009, p. 167):

Pr[W1i ą W0i] = E[W1i ´ Wi0]

= E[W1i] ´ E[W0i]

= E[Wi|Zi = 1] ´ E[Wi|Zi = 0] (3.23)

where the last line makes use of the independence assumption. We can use this to
determine the fraction of the treated who are compliers (Angrist and Pischke, 2009, p.
168). If a high proportion of the treated are compliers, we can feel relatively confident
about the representativeness of the estimated treatment effect.

Different instruments will have different populations of compliers, and so different
LATEs. This insight has important lessons for tests used elsewhere for the validity of
instruments. If treatment effects are heterogeneous, and we estimate very different
effects using two different instruments, we may not be able to tell whether this is due
to heterogeneity in treatment effects or due to the invalidity of one of the instruments.

Can we say anything about the characterisitcs of compliers? While the above
suggests that it is simple to know what proportion of observations are compliers, we
likely would like to be able to say more about this group to better interpret the LATE.
Of course, we cannot simply “look at” the compliers and summarise their observa­
tions, given that one’s status as a complier is unobservable. However, we can still say
something about the relative frequency of characteristics among compliers, allowing
us to respond to questions such as: “are the compliers more likely to have a secondary
education than the general population?” or any such question relating to observed
characteristics. To see this, note that (from Angrist and Pischke (2009, p. 171)) for a
binary variable x1i:

Pr[x1i = 1|W1i ą W0i]

Pr[xii = 1]
=

Pr[W1i ą W0i|x1i = 1]

Pr[W1i ą W0i]

=
E[Wi|Zi = 1, x1i = 1] ´ E[Wi|Zi = 0, x1i = 1]

E[Wi|Zi = 1] ´ E[Wi|Zi = 0]
.

That is to say, if we would like to know how much more/less likely the population
of compliers is with characteristic xi1 = 1 versus the whole population (the left­hand
term), we simply need to compare the first stage for this group, with the first stage for
the whole population. We can follow a procedure of this type to examine the distribu­
tion of any variables of interest.
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Treatments with Multiple Levels So far, we have been considering the case where
Wi, the endogenous (treatment) variable of interest is a binary variable. In this case
when we estimate a LATE, although the parameter is “local” to some specific group, it
is clear that this parameter refers to the impact of a shift from 0 to 1 in the binary vari­
ableWi. However, how does the interpretation of the LATE change when we consider
amulti­level treatment variable? For example, what if the treatment variable of interest
is years of schooling, or total fertility in a family? The response to this question turns
out to require thinking not just about who the instrument causes to shift behaviour, but
also thinking about at what margin of the dependent variable the instrument induces
shifts.

For example, consider a case where we wish to examine the impact of fertility
on child educational outcomes. Here a frequently used instrument is the twin birth
instrument. In particular, let’s consider a twin birth at birth order 3. This could cause
families to move from having had 3 children without the twin, to four children with
the twin, but similarly, could also cause higher margin shifts in fertility, eg a family
that would have had 4 births now has 5 births. In the case of a multi­leveled treatment
variable, as the instrument can cause shifts at multiplemargins of the treatment variable
we can no longer talk of a single class of complier. Here, Angrist and Imbens (1995)
show that the interpretation of the parameter is now in terms of the “Average Causal
Response” function, or in terms of the entire shift of the distribution of the endogenous
variable of interest caused by receipt of the instrument. To do this, they define the
Average Causal Response (ACR) function as follows:

E[Yi|Zi = 1] ´ E[Yi|Zi = 0]

E[Si|Zi = 1] ´ E[Si|Zi = 0]
=

S
ÿ

s=1

ωsE[Ysi ´ Ys´1,i|s1i ě s ą s0i]

where ωs =
P [s1i ě s ą s0i]

řS
j=1 P [s1i ě j ą s0i]

Here, we use Si to refer to the multi­leveled treatment variable of interest. Note that
the quantity on the left­hand side of the first line is the Wald estimate that would come
out of our IV model. Thus, the ACR theorem states that we can interpret the IV (Wald)
estimate with a multi­levelled treatment as a weighted average of the effect of com­
pliers who are shifted by the instrument to move from s ´ 1 to s at each point of the
distribution of S, where the weights are given by the probability that the instrument
shifts the distribution of S at this point. In this case, this is another reason why LATEs
from different (valid) instruments may not be the same if the instrument traces out
different shifts in this ACR function.
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These weights can perhaps be illustrated most simply with an example. Consider
the case mentioned briefly above, where we wish to estimate the impact of family
fertility (a multi­valued treatment) on children’s educational outcomes. In the below
panels, we show plots of the ACR function of shifts in fertility induced by a twin birth.
The top two panels are based on different samples in census data in Israel (fromAngrist
et al. (2010)), and the bottom two panels are based on a developing country sample
and a sample from the USA from Bhalotra and Clarke (2019a). While in all cases a
twin at birth order three causes the biggest shift in fertility when considering families
exceeding 4 children, it also has higher order impacts, up to as much as 9+ births in
a developing country sample.2 Note that here, even using the same instrument, the
LATE will be interpreted quite differently depending on the context examined.

Figure 3.1: Average Causal Response Functions for Twin Birth

(a) Israel Africa/Asia (b) Israel/Europe

(c) Developing Countries (d) USA

Instruments with Multiple Levels A logical counterpoint to the question of how
things change when the endogenous variable of interest is multi­leveled instead of bi­
nary, is the question of how things change when the instrument is multi­leveled instead
of binary. The LATE theorem laid out above has at its heart a Wald estimator, which

2These shifts can be rationalized if one thinks about issues such as access to contraceptive measures
and labour market opportunites, among other things.



3.1. INSTRUMENTS AND THE LATE 89

is by definition based on a binary IV. Fortunately, the results for multi­leveled rather
than continuous IVs are a simple extension to the LATE theorem, and indeed were laid
out in the original paper where LATE was defined, by Imbens and Angrist (1994).

In that paper, they note that under the same four conditions as laid out above, an
IV estimator based on a multi­leveled IV taking values tz0, z1, . . . , zKu will estimate:

τ IV =
K
ÿ

k=1

λkτzk,zk´1
(3.24)

where τzk,zk´1
is a local average treatment effect for compliers whenmoving from level

zk´1 to zk, that is:
E[Y1i ´ Y0i|D(zk) = 1, D(zk´1) = 0],

and λk are a series of weights which are non­negative and sum to 1. Note that here,
the monotonoicity assumption needs to be slightly stricter, as there are multiple levels
of the instrument. Specifically, montonicity in this case requires that for each value of
the instrument, arbitrarily z and w, either Di(z) ě Di(w) or Di(z) ď Di(w) for each
individual i.

Thus, with a multi­valued IV, we observe that the IV estimate is just a weighted
average of LATE estimates for the LATE when moving across the support of the IV.
The weights, denoted λk in equation 3.24 are defined as:

λk =
[P (zk) ´ P (zk´1)] ¨

řK
l=k πl ¨ (Zl ´ E[Z]))

řK
m=1(P (zk) ´ P (zk´1)) ¨

řK
l=m πl ¨ (Zl ´ E[Z])

,

where πk = Pr(Z = Zk). Thus, a specific LATE is given relatively more weight in
two circumstances, as can be observed in the numerator of the above fraction. Firstly,
and logically, a LATE will be given more weight if a larger proportion of individuals
are shifted into compliance precisely at this point, in which case P (zk)´P (zk´1) will
be relatively larger. And secondly, and more obscurely, LATEs will receive more or
less weight depending on the underlying mechanical variation of Z, as summarised by
the second term in the numerator.

WhatChanges if we addControls? In general when discussing the LATE, theWald
estimate is considered as a starting point, however in practice the assumptions leading
to consistency in IV estimates may only hold conditional on covariates. For example,
the frequently used twin instrument is thought to require (at least) controls for maternal
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age, given that the likelihood of a twin birth increases as women become older due to
hormonal changes (see for example discussion in Bhalotra and Clarke (2019b)). In
practice, this implies that we are replacing the independence assumption (3.20) with a
conditional indendence version:

Assumption 8. Conditional Independence

(Yi(1, 1), Yi(1, 0), Yi(0, 1), Yi(0, 0),W1i,W0i) KK Zi|Xi. (3.25)

To see what we estimate if we run 2SLS with controls, Angrist and Pischke (2009)
introduce the following notation:

λ(Xi) ” E[Y1i ´ Y0i|Xi, D1i ą D0i],

where λ(Xi) refers to the treatment effect for each possible value ofXi. For example,
consider a simple case where the only covariate is maternal age. In this case, we would
have a single λ(Xi) value for each maternal age observed in the population. This is
what Angrist and Pischke (2009) refer to as a saturated model—a model where all
possible levels of the covariates are included as a series of dummy variables. In this
case, they show that the treatment effect estimated with a full set of saturated covariates
is:

τ = E[ω(Xi)λ(Xi)], where ω(Xi) =
V (E[Wi|Xi, Zi]|Xi)

E[V (E[Wi|Xi, Zi]|Xi)]
,

where V (E[Wi|Xi, Zi]|Xi) = EtE[Wi|Xi, Zi](E[Wi|Xi, Zi]´E[Wi|Xi])|Xiu. Thus,
in words, the 2SLS estimand is a weighted average of each covariate­specific LATE,
where the weights are given by ω(Xi). These weights place more emphasis on groups
for which the instrument creates more valuation in the fitted values of the first stage:
ie groups where the instrument produces more variation in treatment conditional on
covariates. Angrist and Pischke refer to this as the “Saturate and Weight” theorem,
though it is important to note that there may be times when we wish to work with
more parsimonious models, for example models where continuous variables enter lin­
early rather than as a series of fully saturated dummies. In this case, there is a result
based on work fromAbadie (2003) which states that for compliers the treatment versus
control comparison conditional on Xi is equal to LATE conditional on Xi. However,
in practice, the challenge is that we do not know who the compliers are, so we can­
not estimate these LATEs directly. Abadie (2003) introduced what is now known as
“Abadie’s Kappa”, which allows us to “find” compliers, and hence estimate this LATE
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directly in the complier group. This κ term is useful for a number of reasons, however
goes somewhat beyond the scope of these lectures. To read more, refer to Angrist and
Pischke (2009, pp. 178–180) and references there­in. An important takeaway from
this is that to the degree that the probability that Zi is “switched­on” is approximately
linear inXi, the 2SLS estimand will approximately estimate the conditional LATE for
compliers.

3.1.5 Some Closing Points on the LATE

The Local Average Treatment Effect is what is delivered from a binary instrumen­
tal variable with heterogeneity, however it is likely not the quantity that we are most
intersted in estimating for policy reasons. While the precise nature of the compliers
will depend on each IV, policy relevant quantities are likely based on entirely different
criteria, such as the impact on the entire population, or the impact on some particular
targeted group. There is a robust discussion of the utility of the LATE, focusing on
(among other things) the relative importance of the (good) internal validity of the es­
timates under the maintained assumptions, versus the parameter’s use in an external
population. Much has been written here. A useful (more positive) take of the LATE
is provided by Imbens (2010) in a paper entitled “Better LATE than Nothing…”. A
more critical view is provided by Deaton (2009), a small portion of which is provided
below.

“The LATE may, or may not, be a parameter of interest to the World Bank
or the Chinese government and in general, there is no reason to suppose
that it will be. For example, the parameter estimated will typically not
be the average poverty reduction effect over the designated cities, nor the
average effect over all cities.

I find it hard to make any sense of the LATE. We are unlikely to learn much
about the processes at work if we refuse to say anything about what de­
termines θ; heterogeneity is not a technical problem calling for an econo­
metric solution, but is a reflection of the fact that we have not started
on our proper business, which is trying to understand what is going on.
Of course, if we are as skeptical of the ability of economic theory to de­
liver useful models as are many applied economists today, the ability to
avoid modeling can be seen as an advantage, though it should not be a
surprise when such an approach provides answers that are hard to inter­
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pret.” Deaton (2009, pp. 9–10).

Later in these notes we will return to other quantities estimated based on similar
types of models when returning to discuss heterogeneity in more detail. Regardless
of your own opinion of the use of LATE, it is important to understand exactly what
is being estimated in these models, given their frequency of appearance in papers in
economics.

3.2 Regression Discontinuity Designs

3.2.1 An Introduction to RDDs

We may not always be willing to assume that the relevant unobservables driving
both potential outcomes and treatment assignment are time­invariant as was the case
in differnce­in­differences style models we have studied previously. An alternative
is to assume that unconfoundedness holds locally, i.e., only in a small neighborhood
defined by an observable correlate of selection.

For example, if we were interested in examining the effect of different types of
politicians on the outcomes in their constituencies, we would be very hard­pressed to
make the claim that politicians are randomly assigned to localities, given that they are
explicitly chosen (elected) by constituents! However, in a reasonably tight margin, we
may be willing to assume that the difference between a politician gaining slightly more
than a majority of the vote or gaining slightly less than the majority is largely random.
In the limit, the difference between 50% and +1 vote and 50% ­1 vote is extremely
small, and plausibly unrelated to potential outcomes. However, the final result of both
elections is radically different. In the first case, the assignment mechanism implies
that the consituency recieves treatment (the politician in question), while in the second
case the constituency does not receive tretment. Such local unconfoundedness type
assumptions are at the heart of the regression discontinuity approach. It turns out that
such arbitrary discontinuities are not infrequent in practice, as often formal decision
rules are needed where various individuals seek access to limited spots. For example,
discontinuities are encountered in educational admissions based on test scores, diag­
nostic decisions to define medical care, access to means tested public programs, and a
whole host of other circumstances.
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Notice that when assignment of treatment status varies according to strict rules
along a single observable dimension, x, then we have a special problem for matching
methods. On the one hand, enforcement of the rule means that the assumption of com­
mon support will be violated—we will inevitably rely on some kind of extrapolation.
On the other hand, such a rule itself provides us with the ability to be confident about
the process of selection into the program (particularly when it is sharply enforced).
There may be no problem of selection on unobservables in this case; our primary con­
cern is now allowing an appropriate functional form for the direct effect of the selection
criterion x on the outcome of interest.

Following Lee (2008), suppose that treatment is assigned to all individuals with x
greater than or equal to cutoff κ. The variable x (vote share in the above example) has
a direct effect on outcomes of interest, such as corruption. If we are willing to assume
that this effect is linear, then we can use regression methods to estimate:

yi = β0 + βxxi + τwi + ui (3.26)

where τ will give us the ATE. If the rule is perfectly enforced, then conditional on
x there is no correlation between wi and ui (i.e., conditional mean independence will
hold), so τ is an unbiased estimate. But in order to do this, wemust be very sure that we
have the functional form right for the relationship between x and potential outcomes.

Figure 3.2: Strict Regression Discontinuity Design
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Consequently, we may want to be more cautious in extrapolating a linear relation­
ship between x and y. This is illustrated in Figure 3.2, where a simple plot of the
data suggests that extrapolating a linear functional form for the relationship between
x and potential outcomes may be inappropriate (in fact the true DGP in this simu­
lated example is a cubic function).3 This is illustrated in Figure 3.3. In panel (a), the
“discontinuity” observed between the two linear predictions at point 0 is considerably
smaller than the discontinuity observed when a quadratic fit is considered in panel (b).
Here, if a linear fit were considered, extrapolation leads us astray: in this case, it leads
us to dramatically underestimate the true treatment effect. Extrapolation is required in
particular here precisely because the clean enforcement of the eligibility rule creates
a situation of zero overlap. We never observe y0 for x ą κ, for example. Drawing
on a similar logic to propensity score matching, we can relax functional form assump­
tions by comparing outcomes only among individuals who are in a neighborhood of x
suitably close to the boundary.

Figure 3.3: Regression Discontinuity and The Running Variable
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(a) Linear Fit
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(b) Quadratic Fit

Local unconfoundedness: We now make a less stringent assumption about (non­
)selection on unobservables: the unconfoundedness needs only hold locally, in a neigh­
borhood around κ. As Lee and Lemieux (2010) argue, even when agents can exert
control over the forcing variable x, if that control is imperfect then the realization of
whether x is above of below the cutoff κ, for agents very close to κ, is likely to be
driven largely by chance:

lim
xÓκ

E(εi|x ą κ) = lim
xÒκ

E(εi|x ă κ).

3Figure 3.2 presents a regression discontinuity setting with a perfectly enforced eligibility rule (at
x = 0). Treated individuals are denoted by the small blue x, untreated by the red o. The DGP of y is
y = 0.6x3 +5w+ ε, where ε „ N (0, 1) and x „ N (0, 1). Linear regression of y on x and w gives βx

= 2.08(0.22) and τ = 3.29(0.42).
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If local unconfoundedness holds, this then leads to our estimate of the effect of treat­
ment:

τ = lim
xÓκ

E(Yi|x ą κ) ´ lim
xÒκ

E(Yi|x ă κ)

= lim
xÓκ

E(Y1i|x ą κ) ´ lim
xÒκ

E(Y0i|x ă κ) (3.27)

= E[Y1i ´ Y0i|x = κ]

In general, what we estimate in a regression discontinuity is the average treatment
effect for observations with x approximately equal to κ. When treatment effects are
heterogeneous, this will not be either the ATE or the ATT, but rather the ATE(κ). Of
course, there is nothing that will imply that this treatment effect will tell us anything
about treatment effects at other points of the running variable— see for example figure
3.4 where τ(κ) is relatively uninformative for τ at certain other points of the support
of the running variable.

The closer the neighborhood around κ we use for estimation, the less of an effect
our assumptions about the functional form for x will have. But it is common to use
a flexible or nonparametric approach for the relationship between x and yi to avoid
making assumptions about functional form in any case. These are described in section
3.2.3 below.

3.2.2 Regression Discontinuity Designs

Sharp Design

The prototypical RD design is a “sharp design”, where the discontinuity implies
a concrete change in treatment status at the threshold κ. In this case, all individuals
who are located below the threshold value are assigned to the control group, and all
individuals who are located above the threshold value are assigned to the treatment
group. This allows to write a very simple model for treatment assignment, which is
that:

wi = 1txi ě τu. (3.28)

A clear example of this could be an election between two candidates (say a left­wing
versus a right­wing mayor). If our treatment is that a county is assigned to a left­
wing mayor, we know that this will only be observed if in this county the left­wing
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Figure 3.4: Regression Discontinuity and Heterogeneity over the Distribution of x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Running variable

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ou
tco

m
e v

ar
iab

le

} ( )

mayor receives at least 50%+1 vote, while if the candidate receives 50%­1 vote, the
municipality will be assiged to the “treatment” group. The important thing here is
that there is absolutely no discretion: if a majority of votes is received a candidate is
chosen, whereas if a majority is not received, a candidate is not chosen.

Given the assignment mechansim described in equation 3.28, the impact of being
assigned to treatment can be isolated easily given that the variable of interest jumps
from 0 to 1 precisely when moving across point κ. In this case, we can estimate the ef­
fect of assignment to wi following equation 3.27. When comparing average outcomes
of y at points just below τ , with average outcomes of y at points just above τ we gain
an esimate of the impacts of treatment shifting from 0 to 1, holding all else constant
(save for the very small movement in the running variable).

Fuzzy Design

In the “sharp” regression discontinuity design examined so far, the probability of
receiving treatment jumps deterministically from zero to one at the cut­off. Such is the
case, for example, with simple majority elections, where crossing the threshold of the
vote majority automatically results in a candidate being elected. Perhaps even more
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common than pure regression discontinuities are situations in which the probability of
treatment jumps at the cut­off, but not deterministically. In these cases, not everyone
above the cutoff is treated, and not everyone below the cutoff is untreated. Neverthe­
less, there is some local manipulation which ocurrs at this point, and which can be used
for identification of a treatment effect. Essentially, now rather than the likelihood of
treatment jumping by one at the cut­off, we observe:

lim
xÓκ

Pr(wi|x ą κ) ‰ lim
xÒκ

Pr(wi|x ă κ). (3.29)

Graphically, the difference in these designs can be obeserved in Figure 3.5. In
the case of sharp designs, plotted on the right­hand side, there is no discretion in the
application of the assignment rule. To the right of the threshold, no individual receives
treatment, and to the left of the threshold, everybody receives treatment. However,
in the case of the Fuzzy design, treatment is discretional. While in Fuzzy designs,
the threshold does have an impact and does shift behaviour, this shift is not absolute,
with certain individuals either opting into treatment below the cutpoint or opting out of
treatment above the cutpoint, in which case the observed change does not jump sharply
from 0 to 1, but rather in a “fuzzy” way from some value greater than or equal to 0, to
some value less than or equal to one.

Figure 3.5: Fuzzy versus Sharp RDD Designs
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(b) Fuzzy Design

For example, Ozier (2011) uses a cutoff (eligibility) rule in primary exam scores to
estimate the impact of secondary education in Kenya; not everyone who gets a score
above the threshold attends secondary school, but at least some do. In such cases,
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instrumental variable methods may be used: the discontinuity may be thought of as
a valid instrument for treatment in the neighborhood of the discontinuity. This is an
interesting example of the LATE framework laid out above: the cut­off (treatment)
provides a case of imperfect compliance. Now, rather than simply estimating the dif­
ference between those just above and just below the cut­off (as was the case in a sharp
RD and equation 3.27), the effect must be weighted by the probability that those who
cross the threshold are convinced to opt for treatment4:

τF =
limxÓκ E(Yi|x ą κ) ´ limxÒκ E(Yi|x ă κ)

limxÓκE(Wi|x ą κ) ´ limxÒκ E(Wi|x ă κ)
. (3.30)

This is the well knownWald estimator. As in section 3.1.4, it allows us to estimate a
treatment effect, but this treatment effect holds only for the subpopulation of compliers.
In this case, compliers are the units who would get the treatment if the cutoff were at
κ or above, but they would not get the treatment if the cutoff were lower than κ. In
the Ozier (2011) example, they are those students who would go on to secondary if
they achieve a score above the cut­off in the Kenyan Certificate of Primary Education,
however would leave school if they do not achieve a score over the minimum cut­off.

3.2.3 Estimation and Inference with RD

Global vs Local Methods

Practical concerns when it comes to estimating parameters in regression disconti­
nuity stem from the fact that we must adequately capture the relationship between the
running variable and the dependent variable itself. If we fail to properly capture this
relationship, we may incorrectly infer that this relationship is due to the discontinuity,
κ rather than simply movements away from the discontinuity x.

There are two broad ways to deal with the issue of the relationship between the
running variable and the outcome of interest. The first—parametric methods—consist
of trying to adequately model the relationship between y and x over the entire range
of data. The second—non­parametric methods—consist of limiting analysis to a short
interval optimally chosen to be close to the cut­off (a distance known as the bandwidth),

4It is worth noting then, that as the denominator (likelihood of treatment given that the threshold is
crossed) approaches 1, the fuzzy regression formula converges on the sharp RD formula displayed in
3.27. This is always the case with LATE, where as the instrument becomes perfectly binding, the IV
estimate approaches the reduced form estimate.
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and then simply fitting a linear trend on each side.

Parametric methods These methods approach regression discontinuity as a prob­
lem of fitting a correctly­specified functional form to model the relationship between
the running variable and the outcome variable on each side of the cut­off. Thus, the
name “parametric methods”, as we wish to correctly parametrize the relationship be­
tween x and y to thus isolate the effect of jumps inw at the threshold κ. These methods,
also sometimes known as the global polynomial approach, then infer that the effect of
receiving the treatment is the difference between each function as it approaches the
discontinuity from each direction.

The global polynomial approach is straightforward to implement (Lee and Lemieux,
2010). It amounts to a regression of the form (here a second­order polynomial):

yi = µ0 + (µ1 ´ µ0)Ti + β+
1 Ti(xi ´ κ) + β´

1 (1 ´ Ti)(xi ´ κ)

+β+
2 Ti(xi ´ κ)2 + β´

2 (1 ´ Ti)(xi ´ κ)2

Notice that the polynomial is centered at the cutoff point and the polynomial can take
a different shape on either side of the cutoff. These address potential non­linearity
illustrated in Figure 3.2. Here, the estimates tβ+

1 , β
´
1 , β

+
2 , β

´
2 u are designed to (ad­

equately?) capture the relationship between x and y, while the treatment effect of
interest is given by the remaining discontinuity at treatment Ti, which in our model is
captured by µ1 ´ µ0.

The parametric approach thus reduces to correctly specifying these global polyno­
mials. While the above specification suggests a cuadratic relationship, there is nothing
(computationally at least) stopping us from using a cubic or even cuartic polynomial.
The outstanding issue is then the choice of order of polynomial. One approach, de­
scribed by Lee and Lemieux (2010), include choosing the model that minimizes the
Akaike information criterion (AIC):

AIC = Nln(pσ2) + 2p

where pσ2 is the Mean Squared Error, and p is the number of parameters. An alternative
is to include dummy variables for a number of bins, alongside the polynomial, and
test for the joint significance of bin dummies. The latter is also useful as a form of
falsification test: we might worry if there were discontinuities in the outcome variable
at thresholds other than the cutoff we are using for analysis.
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However, more generally, we should ask ourselves why should we use all the data
for inference if we are explicitly making a local identification argument? Surely, if
we are using data over a larger range of x values, we should be more concerned that
the “local unconfoundedness” assumption becomes more and more unbelievable, and
the marginal benefit of adding data very far from the discontinuity is highly question­
able. These concerns are precisely why parametric approaches are rarely appropriate,
and generally should not be used. In practice, regression discontinuity applications
focus on local methods, where considerable attention is paid to the concern of how to
determine the optimal analysis window.

Non­parametric methods then take the more logical approach of focusing only on
a small sample of the data with a value of x that puts it very close to the cut­off point.
By doing so, we line up the theory which states that falling on either side of the cut­off
is locally random, with the practice of focusing on areas local to the cut­off.

Local Polynomial Methods

The idea behind local polynomialmethods is that—in linewith identifying assumptions—
we will focus our attention on areas “local” to the cut­off. We will then parametrically
control for x within this local area only, discarding observations which are too far
from the cut­off to merit consideration. We call the interval around the cutoff that
is used for estimation the bandwidth, generally denoted h. The limiting argument
above in (3.27) hints at a key feature of the asymptotic argument that underlies the RD
approach (Lee and Lemieux, 2010): the bandwidth should be as small as the sample
allows. There are two main reasons for why this is advantageous. First, the bigger
the bandwidth that we use, the more important it is to correctly specify the functional
form for the relationship between the running variable, x, and potential outcomes. As
the bandwidth shrinks, there is less and less variation in x in the sample being used for
estimation, and so the scope for x to bias estimates of the treatment effect is reduced.
Second, if x is chosen by agents under study, but without perfect control, then agents
with very similar x values who end up on opposite sides of the cutoff are likely to have
made similar choices. The reason that they end up on either side of the cutoff is largely
chance. On the other hand, agents very far from the cutoff may have made different
choices about x. Those differences may be too big to be likely to be explained by im­
perfect control of x. And if choice of x is determined with (even partial) knowledge
of potential outcomes, then larger bandwidths introduce a source of bias.
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As laid out in Cattaneo and Titiunik (2022), the local polynomial approach requires
four steps. These are:

1. Selecting the local polynomial order and kernal weighting function

2. Given these choices, determining a bandwidth h for estimation

3. Combine the choices from 1 and 2 with a standard least squares method for
estimation

4. Conduct valid statistical inference

Selection of Polynomial Ordering Even when focusing on “local” windows around
the cut­off point, it is necessary to control for relationships between x and y which may
partially confound the RD estimate at the cut­point. In local polynomial methods, these
controls consist of separate polynomial controls of x on either side of the cut­off. For
example, a first order polynomial (p = 1) consists of capturing a separate linear rela­
tionship on either side of the cut­point, while a quadratic polynomial, p = 2, consists
of including controls for x and x2, with separate parmeters on either side of the cut­off.
In practice, the standard recommendation is to use local linear methods, setting p = 1

(Cattaneo and Titiunik, 2022). This picks up recommendations to avoid higher­order
polynomials, which have been made, for example by Gelman and Imbens (2019) who
caution against using polynomials greater than order 2 to capture regression discon­
tinuity effects, focusing on this practice in the global polynomial approach described
previously. The point from Gelman and Imbens (2019) is that estimates using higher
order polynomials may be misleading, and potentially harmful to estimated effects
given that they may give unreasonable weight to values which are far from the cut­off
in fitting polynomials, and may be very jumpy close to the cut­off point with impor­
tant implications for the estimated parameters. Their preference is to focus on local
linear regression discontinuity, or polynomials only up to quadratics (once again in a
local setting) to optimally capture effects of the running variable. Recent work from
Pei et al. (2021) suggest that in some local settings, higher polynomials may actu­
ally behave reasonably well, and propose an optimal (mean squared error minimizing)
procedure to select the degree for local polynomials.

Selection of aKernel A separate consideration relates to how to weight observations
local to the cut­off. This is defined using a kernel density, generally referred to asK(¨).
The kernel allows for observations to be assigned more or less weight based on their
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proximity to the cut­off. A kernel is a function which integrates to 1, and which defines
how much weight to assign to observations at specific points of the density. A valid
kernel then must integrate to 1 and be non­negative. Often, but not always, kernels
are symmetric. Commonly used kernels are described in Figure 3.6. In RD designs a
triangular kernel is often used, which gives the largest weight to observations which are
closest to the cut­off, and which then declines linearly away from this point. Cattaneo
and Titiunik (2022) suggest that triangular kernels haveMSE optimal properties, while
uniform kernels, which give identical weights to each observation local to the cut­off
are also often used as these minimize the variance of local polynomial estimators,
resulting in narrower confidence intervals.

Figure 3.6: Common Kernel Densities
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Selection of Bandwidth The selection of the bandwidth in regression discontinuity
estimators is an area with significant research advances in the last decade. The selec­
tion of bandwidth h implies that estimation will proceed using only observations who
fall within the range xi P [κ ´ h, κ + h]. The primary reason for using a larger­than­
infinitesimal bandwidth is, of course, sample size. This is a perfect example of the
bias­variance trade­offs we sometimes come across in econometrics. While we would
like to use only those observations who are just above of below the cut­off, if we re­
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strict to too small a sample, estimates will be too imprecise to permit any constructive
inference.

Fortunately, there is a considerable amount of work on how to optimally balance
this trade­off. Early work by Imbens and Kalyanaraman (2012), sometimes called first
generation bandwidth estimators, provide specific guidelines for bandwidth choice.5

The plug­in estimator for h provides a formula to determine the optimal bandwidth
based on, among other things, the sample size available. This formula explicitly recog­
nises the bias­variance trade­off discussed above, depending (negatively) on the bias
and (positively) on the variance. The suggested formula for h proposed by Imbens and
Kalyanaraman (2012) is:

ĥIK =

(
pVIK

2(p+ 1) pB2
IK + pRIK

) 1
(2p+3)

ˆ n
´1

(2p+3) , (3.31)

where n is the sample size, p is the degree of the polynomial included on each side
of the discontinuity, pV is an estimate of the variance of the RD parameter τ̂ , pB is
an estimate of the bias of this parameter, and pR is a regularisation term to avoid small
denominators when the sample size is not large. Alternatively, Imbens and Kalyanara­
man (2012) discuss a manner of calculating optimal h using a cross­validation tech­
nique which determines the optimal bandwidth based on the particular sample size
of an empirical application (additional details and an example can also be found in
Ludwig and Miller (2000)).

The bandwidth ĥIK will lead to an MSE optimal estimator for the parameter τ ,
but this relies on the underlying estimates for the variance, pVIK , the bias, pBIK and the
regularization term. While Imbens and Kalyanaraman (2012) propose estimates for
these quantities, the estimates themselves rely on an initial bandwidth, which is itself
not optimally chosen. This was followed up by more recent work (Calonico et al.,
2014a) which has provided enhancements to the plug­in bandwidth of (Imbens and
Kalyanaraman, 2012), suggesting

ĥCCT =

(
pVCCT

2(p+ 1) pB2
CCT + pRCCT

) 1
(2p+3)

ˆ n
´1

(2p+3) , (3.32)

5Packages to implement this are available in Stata and SAS to select the optimal bandwidth. Similar
programs also exist for R, MATLAB, and most other computer languages in which econometric esti­
mators are run. More recent optimal bandwidht choice packages described below are provided by the
original authors for R, Stata and Python.
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where pVCCT , pBCCT , and pRCCT are consistent estimates of their population counter­
parts, while also using MSE­optimal bandwidths in the generation of these estimates.
The precise formulae for these estimates are provided in the appendix of Calonico
et al. (2014a) though are quite cumbresome. Fortunately, all of these optimal band­
width algorithms are available in statistical programming languages such as Stata and
R (see for example Calonico et al. (2014b)) so the stability of estimates to different
techniques can be examined quite simply. A website is maintained by the authors
of this and other related papers at providing a huge amount of useful related econo­
metric material and information about computational implementations at https://
rdpackages.github.io/.

Bringing The Ingredients Together With all of the preceding ingredients in hand –
a polynomial degree, a kernel and an optimal bandwidth, estimation of the treatment
effect in RDDs consists of comparing conditional expectations at the limits on either
side of the cut­point. On the left­hand side of the cut­off,

β̂´ = argmin
β

N
ÿ

i=1

1tXi ă κu [yi ´ β0 ´ β1(Xi ´ κ)]2K

(
Xi ´ κ

h

)

where β̂´ refers to the vector of parameter estimates β̂+,0, β̂+,1 on the left­hand side
of the cut­off, and here we are using a linear polynomial, p = 1. Similarly, on the
right­hand side of the cut­off:

β̂+ = argmin
β

N
ÿ

i=1

1tXi ě κu [yi ´ β0 ´ β1(Xi ´ κ)]2K

(
Xi ´ κ

h

)
.

Based on these estimates, the regression discontinuity estimate τ̂ the difference of the
intercept at the cut­off point:

τ̂ = β̂+,0 ´ β̂´,0. (3.33)

What is nice about this estimate is that it is clear that we are interested in the intercepts
on either side of the cut­off, ie the regression estimates at the points where the dis­
continuity occurs. Under the assumption of local unconfoundedness, τ̂ from equation
3.33 is a consistent estimate for τ from equation 3.27.

The theory behind the estimation of the confidence intervals for this parameter τ̂ is
not trivial. As we are interested in estimates directly at the threshold of the regression
discontinuity, there is bias due to smoothing of the regression approximation at this
point. There is a recent and large body of work on the estimation of standard errors

https://rdpackages.github.io/
https://rdpackages.github.io/
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and confidence intervals, with recent implementations often favouring the “robust­bias
corrected” confidence intervals proposed in Calonico et al. (2014a). Additional detail
can be found in the overview paper of Cattaneo and Titiunik (2022, section 3.2).

Graphical Representations

Arguably, one of the reasons why RD is a successful identification strategy is that
it often leads to visually striking representations of the causal effect under study. A
shift owing to some arbitrary crossing rule in the running variable generates exoge­
nous variation in the exposure to some particular phenomenon, and this shift can be
graphed quite simply in two dimensions. When examining how some outcome of in­
terest moves along the support of the running variable, we can observe both a general
pattern describing the relationship between the running variable and the outcome of
interest, and importantly, visually inspect for any discontinuities at the assignment
thresold.

Thus, generally, studies involving a RDD will plot the underlying variation be­
tween the running variable and outcome of interest (as well as potentially other pat­
terns described later in this section). Generally, rather than plotting the full dataset,
some smoothed function is plotted of averages of outcomes at various points of the
running variable. For example, consider the simulated data presented in Figure 3.7.
Here a simple discontinuity6 exists when the running variable plotted on the horizon­
tal access moves from negative to 0 or above. In panel (a) the full data is plotted,
where the discontinuity is clearly visible, though the nature of the jump is somewhat
disguised by the underlying variation at each point. Remaining panels (b)­(d) present
alternative plots, commonly referred to as “RD plots”, where instead of presenting raw
data, binned averages are presented in varying numbers of points. In these graphs, each
point refers to the average outcomes in small ranges of the running variable, containing
mutually exclusive groups of individuals. Here, the size of points refers to the number
of individuals contained in each group, and on top of each scatter plot, a quadratic fit
of the averaged data is plotted.

Frequently, these bins are chosen arbitrarily (for example using 10 and 20 bins as

6This is simulated as:

yi = ´2 + 0.5wi + 0.03w2
i + 2Treati + εi

where wi is a uniform variable with support on [­2,2], εi „ N (0, 1) and Treati ” 1twi ą 0u, for
i P t1, . . . , 1000u.
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Figure 3.7: Graphical Representation in an RD Design
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(d) Optimal Bin Selection

in panels (b) and (c) of Figure 3.7). However, there are optimal ways to determine bins
and generate RD plots. The work of Calonico et al. (2015) provides a data­driven rule
for bin selection (as well as allowing for the suggestion of an optimally defined polyno­
mial fit in the graph), which, in the case of bin estimates, are chosen to be evenly spaced
or quantile spaced. Evenly spaced refers to bins that are spaced at an equal absolute dif­
ference in the running variable, while quantile spaced refers to bins which are spaced
such that they are distributed evenly across percentiles of the observed data (taking
into account that data may be more sparse at different values of the running variable).
These bins are optimally chosen in a way which minimizes the mean­squared error of
the regression function describing the relationship between binned averages and the
outcome variable of interest. The mean squared error measures the distance between
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observed averages and the regression­based prediction, and can be shown to be a sum
of the variance of the estimate and the square of the bias. Thus, these optimal bins act
to trade­off lower variance and lower bias. Full details of these optimal bins, as well
as optimal selection of polynomial fits, can be found in Calonico et al. (2015), and
computational implementations of this procedure are widely available.

These binned RD plots are generally presented to document the underlying rela­
tionship between the running variable and the outcome of interest. However, these
plots can also be documented for variables which one would expect to be balanced
around the RD cut­off. For example, if some measure is available for baseline out­
comes of individuals capturing characteristics prior to their assignment to the RD
treatment, graphs can be generated to examine whether any discontinuities in base­
line outcomes are observed at the point of the discontinuity. If the assumption of
local unconfoundedness really is met, one would not expect a similar jump in base­
line outcomes at this point. These graphs can thus be used to visually assess whether
the assumption of local unconfoundedness is reasonable. We turn to this point more
formally below.

3.2.4 Assessing Unconfoundedness

The continuity argument that we used to show that the RD approach estimates a
treatment effect suggests a way of testing the underlying assumption. If variation in x
around the discontinuity is “as good as” random, then it should also be the case that
other variables do not jump at this discontinuity. This is analogous to a balance or
placebo test often implemented prior to analyzing data from a randomized, controlled
trial (Imbens and Wooldridge, 2009).

A simple way to implement this is to use the same specification as in the outcomes
equation, but use instead as a dependent variable some “exogenous” covariate Zi and
test limxÓκE(zi|x ą κ) ´ limxÒκ E(zi|x ă κ) = 0. If a discontinuity is found in a
covariate zi, this provides evidence that the assumptions underlying the RD design do
not hold, even if it is in principle possible to address this by controlling for the covariate
in question. For example, Urquiola and Verhoogen (2009) study a RD design which
uses class size caps to estimate the effect of class size on children achievement in Chile.
They show that in this context parental education and income drop discontinuously at
the cutoff, which suggests that better educated parents choose schools where classes
are smaller.
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Figure 3.8: McCrary test of heaping of running variable (vote shares)

r ¼ X 1;X 2; . . . ;XJ . The binsize and bandwidth were again chosen subjectively after using the automatic
procedure. Much more so than the vote share density, the roll call density exhibits very specific features near
the cutoff point that are hard for any automatic procedure to identify.27

The figure strongly suggests that the underlying density function is discontinuous at 50%. Outcomes within
a handful of votes of the cutoff are much more likely to be won than lost; the first-step histogram indicates
that the passage of a roll call vote by 1–2 votes is 2.6 times more likely than the failure of a roll call vote by 1–2
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Fig. 4. Democratic vote share relative to cutoff: popular elections to the House of Representatives, 1900–1990.

Table 2

Log discontinuity estimates

Popular elections Roll call votes

�0.060 0.521

(0.108) (0.079)

N 16,917 35,052

Note: Standard errors in parentheses. See text for details.
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Fig. 5. Percent voting yeay: roll call votes, U.S. House of Representatives, 1857–2004.

27I use a binsize of b ¼ 0:003 and a bandwidth of h ¼ 0:03. The automatic procedure would select b ¼ 0:0025 and h ¼ 0:114.

J. McCrary / Journal of Econometrics 142 (2008) 698–714710

Another tests suggested by McCrary (2008) consists in estimating non paramet­
rically the density of the forcing variable (e.g. through kernel regression) and testing
whether it presents some discontinuity around the threshold, i.e. whether limxÓκ fX(x)´

limxÒκ fX(x) = 0. If a discontinuity is found in the density of x, then it is likely that
individuals were able to manipulate precisely x to choose on which side of the cut­
off they were located (e.g. income around “jumps” in the marginal tax rate Kleven
and Waseem (2013)). This would cast serious doubt on the RD strategy. Figure 3.8
displays the logic of the test. If there were manipulation of the running variable (in
this example, vote share) we may expect to see a heaping of election winners with vote
shares just above 50%. This would be evidence in favour of vote buying or some other
ballot manipulation, and strong evidence against the validity of a local unconfound­
edness assumptions. In practice, we see little statistical evidence to suggest that such
heaping occurs in this example.

3.2.5 Regression Kink Designs

The regression discontinuity design discussed in previous sections is based on the
idea that an external effect creates a discontinuous jump in the likelihood of receiving
treatment at a particular point. Another set of methodologies exist when, rather than
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an appreciable jump in levels, we may expect an appeciable change in the slope of
a relationship at a particular point. These “regression kink designs” are very closely
related to the RDDs discussed above, however nowwe are more interested in the sharp
change in the first differential, rather than the level of the variable itself. Examples of
kinks from the economic literature include changes in rates of unemployment benefits
by time out of work (Landais, 2015), changes in drug reimbursement rates (Simonsen
et al., 2016) and various other applications (see table 1 from Ganong and Jäger (2014)
for a more exhaustive list).

Card et al. (2015) provide extensive details on the estimation methods and as­
sumptions underlying the regression kink design. Many of the considerations, such
as bandwidth calculation and polynomial order are very similar to those in regression
discontinuity designs (see also Calonico et al. (2014a) who extend their RDD discus­
sion to the RKD case). In practice, the regression kink design consists of estimating
the change in the slope of the outcome variable of interest yi at the discontinuity:

yi = β0+β+
1 Di(xi´κ)+β´

1 (1´Di)(xi´κ)+β+
2 Di(xi´κ)2+β´

2 (1´Di)(xi´κ)2+εi

(3.34)
where here Di is a binary variable taking 1 when located to the right of the kink, and
zero otherwise. Here we are assuming a quadratic functional form, but again, this is
can be generalised to other polynomial orders.7 In order to calculate the treatment
effect of the change in exposure, we calculate the RKD estimator as:

τ̂RKD =
pβ+
1 ´ pβ´

1

pγ+
1 ´ pγ´

1

where the estimates of γ are generated by running a similar regression as in equation
3.34, however replacing the outcome variable yi with the treatment variable. These
coefficients capture the corresponding change in the slope of the treatment variable at
the discontinuity point. In many cases, the values in the denominator may be known
constants, if, for example, they are based on explicit marginal rules, and in these cases
rather than estimates, the actual values should be used.

The regression kink set­up relies on similar types of assumptions as those in a re­
gression discontinuity. Namely, we require that no other variables of relevance change
their slope at the kink point, and there should be no manipulation of the running vari­
able around the kink point suggestive of people strategically sorting in to points to be

7A useful discussion of how to optimally choose polynomial orders is available in Card et al. (2015),
who also provide a pointer to other results.
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eligible for benefits on either side of the cut­off. Fortunately, as is the case with RDDs,
these assumptions can be probed with some of the methods described in the previous
sub­section.
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Empirical Exercise 3: Trafficking Networks and the Mexican Drug War

This exercise will have two parts. An applied part, and a part we will simulate
ourselves.

The first part of the class (question A) will look at the paper “Trafficking Networks
and the Mexican Drug War”, by Dell (2015). Her paper examines the effect of
Mexican anti­drug policy on drug related violence. She exploits variation in the
mayor’s party following elections, and uses close elections to estimate using a
regression discontinuity design. The PAN party has implemented a number of
large­scale anti­trafficking measures, and she examines whether these policies have
an effect on drug violence. For further background, the paper is very interesting
reading! For part 1, you are provided with the dataset DrugTrafficking.dta,
which has variables measuring vote share in close elections (only close elections
are included), homicides and the rate of homicides, as well as whether the election
was won by PAN. A graphical result from the paper (which you will replicate
yourselves) is presented below.

For the second part (question B), we will simulate our own data, to examine how
regression discontinuity performs when we know the exact data generating process
(DGP). Simulation is useful exercise in examining the performance of an estimator
in recovering a known parameter: something we only have if we have control of
the unobservables.

Replication of figure 4 panel B of Dell (2015) “Trafficking Networks and the Mexican Drug War”,

American Economic Review 105(6):1738­1779
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Questions:
(A) Estimating a Regression Discontinuity with Dell (2015) Open the dataset
DrugTrafficking.dta, and run the following regression, as per Dell’s equation 1:

HomicideRatem = β0 + β1PANwinm + β2PANwinm ˆ f(V oteDifm)(3.35)

+β3(1 ´ PANwinm) ˆ f(V oteDifm) + εm

PANwinm is a binary term for whether PAN won in the close election, while the
interaction terms are functions of vote shares on either side of the close election
margin, allowing for this “running variable” to behave differently on each side of
the discontinuity. In each case we will use the variable HomicideRatem, the rate
of homicides at the level of the municipality, as our outcome variable of interest.

1. Run the regression using a linear function for f(V oteDifm) on each side of
the discontinuity.

2. Run the regression using a quadratic function for f(V oteDifm) on each side
of the discontinuity. This will require two terms (linear and squared) on each
side of the discontinuity.

3. Replicate the figure on the previous page (panel 4 B fromDell’s paper). There
is no need to worry about formatting, nor plotting the confidence intervals
which are displayed as dotted lines. Note that each point is the average homi­
cide rate in vote share bins of 0.005. You can plot the solid lines on either
side of the discontinuity using a quadratic (for example qfit).

4. Why do we focus only on the range of vote margins of ­0.05 to +0.05?

(B) Simulating a Regression Discontinuity In this question, we will simulate a
discontinuous relationship, and examine how using a local linear regression to cap­
ture the discontinuity is appropriate to capture the true effect when the relationship
between the running variable (x) and the outcome variable (y) is not linear. We will
refer to figure 5 in the notes to simulate our data. This is based on the following
DGP:

y = 0.6x3 + 5w + ε

Here y is the outcome variable, x is the running variable, and w is the treatment
variable. Treatment will only be received by individuals for whom x ě 0, so w is
defined as equal to 1 if x ě 0 and 0 if x ă 0.
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1. Simulate 100 data points which follow the above specification. Note that
for this specification, both x and ε are assumed to be drawn from a normal
distribution, with mean 0 and standard deviation 1. In Stata, these can be gen­
erated the rnormal() function, for example, gen epsilon = rnormal().
The set obs command can be used to define the number of observations to
be simulated.

2. Replicate figure 5 from the notes. Do not worry about style. If you want
your pseudo­random numbers to exactly replicate those from the notes, before
drawing the numbers, use the command set seed 110.

3. Estimate the coefficient on the treatment effect w using a linear control for
the running variable while concentrating on the observations in the range x P

(´2, 2), x P (´1.9, 1.9), . . . , x P (´0.1, 0.1). Estimation of the effect should
use a regression following the above function for y. You can capture the
running variable using the same linear trend on both sides, so only need to let
x enter the regression linearly, and with no interaction term. This will result
in 20 different estimates (one for each set of x ranges). Feel free to display
these as you wish, though a graph may be useful in visualising them easily.

Hint: Rather than doing this all by hand, it may be useful to use a loop! As an
example, consider running a regression of y on x only for those observation
who have x greater than a series of numbers, and saving the coefficient on x
from each regression as a seperate observation in the variable coefficients,
and the x cutoff from each regression in the variable cutoff:
gen coefficients = .
gen cutoff = .
local i = 1
foreach num of numlist 0.1(0.1)2 {

reg y x if x > `num'
replace coefficients = _b[x] in `i'
replace cutoff = `num' in `i'
local i = `i'+1

}

You will need to apply this code to the specific example in question 3, which
will require some modifications!

4. What do the above results tell you about the performance of RDD using local
linear regressions? Is there some theoretical guidance on how to determine
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the optimal bandwidth? If so, what are the considerations in making this
choice?



Chapter 4

Testing, Testing: Hypothesis Testing in
(Quasi­)Experimental Designs

Required Readings
Romano et al. (2010) (section 8 only)

Suggested Readings
Anderson (2008)
Dobbie and Fryer (2015)
Gertler et al. (2014)

The nature of frequentist stastical tests implies that we will at times make mistakes.
Indeed, this is built directly into the framework which we have also used in inference
up to this point. When we refer to a parameter being significant at 95%, we mean that
if we were able to repeat this test many times, in 5% of those we would incorrectly
reject the null hypothesis. In general, this is not a problem as long as our inference
respects the nature of these tests, and our findings are taken in light of this chance.
However, in this final section of the course we will consider a number of situations
in which this may be a problem. The first: how to consider hypothesis tests when
we have multiple dependent variables is a technical issue for which, fortunately, there
are many solutions. The second, abuse of the notion of frequentist testing owing to
incentives to report a significant result is a deeper problem related to research in social
sciences, on which a lot of attention is only recently being placed.

115
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If researchers are selectively more likely to report positive results, or if there are
strong incentives in place which mean that statistically significant findings are more
valuable, the nature of our traditional hypothesis tests breaks down. At its most ex­
treme, the crux of this problem is summed up precisely by Olken (2015). As he states:

“Imagine a nefarious researcher in economics who is only interested in
finding a statistically significant result of an experiment. The researcher
has 100 different variables he could examine, and the truth is that the ex­
periment has no impact. By construction, the researcher should find an
average of five of these variables statistically significantly different be­
tween the treatment group and the control group at the 5 percent level—
after all, the exact definition of 5 percent significance implies that there
will be a 5 percent false rejection rate of the null hypothesis that there is
no difference between the groups. The nefarious researcher, who is inter­
ested only in showing that this experiment has an effect, chooses to report
only the results on the five variables that pass the statistically significant
threshold.”

Olken (2015), p. 61.

And indeed, this problem is certainly not new, and is not isolated to only the social
sciences! A particularly elegant (graphical) representation of a similar problem is de­
scribed in the figure overleaf.

In this section we will, briefly, recap the ideas behind the basic hypothesis test and
the types of errors and uncertainty that exists. Then we will discuss how these tests can
be extended to take into account various challenges, including very large sample sizes,
and the use of multiple dependent variables. We will then close discussing one par­
ticular way which is increasingly used to avoid concerns about the selective reporting
problem described above, namely, the use of a pre­analysis plan to pre­register analy­
ses before data are in hand, thus removing so called “researcher degrees of freedom”
from analysis.1

1For some interesting additional discussion on these issues refer to work by Andrew Gelman and
colleagues (for example Gelman and Loken (2013)). Andrew Gelman also has a blog where he provides
frequent interesting analysis on issues of this type (http://andrewgelman.com).

http://andrewgelman.com
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Figure 4.1: A Funny Comic but a Serious Problem (Munroe, 2010)
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4.1 Size and Power of a Test

In order to think about hypothesis testing and the way that we would like to be able
to classify treatment effects, we will start by briefly returning to the typical error rates
from simple hypothesis tests. Let’s consider a hypothesis test of the type:

H0 : β1 = k versus H1 : β1 ‰ k.

In the above, our parameter of interest is β1, and k is just some value which we (the
hypothesis tester) fix based on our hypothesis of interest.

Given that β1 is a population parameter, we will never know with certainty if the
equality in H0 (the “null hypothesis”) holds. The best that we can do is ask how
likely or unlikely is it that this hypothesis is true given the information which we have
available to us in our sample of data. In simple terms, producing an estimate for β1

which is very far away from k will (all else constant) give us more evidence to believe
that the hypothesis should not be accepted.

Classical hypothesis testing then consists of deciding to reject or not reject the null
hypothesis given the information available to us. Although we will never know if we
have correctly or incorrectly rejected a null, there are four possible states of the world
once a hypothesis test has been conducted: correctly reject the null; incorrectly reject the null;
correctly fail to reject the null; incorrectly fail to reject the null. Two of these out­
comes (the underlined outcomes) are errors. In an ideal world, we would like to per­
fectly classify hypotheses, never committing either types of the errors above. How­
ever, given that in applied econometrics we never know the true parameter β1, and
that hypothesis tests are based on stochastic (noisy) realizations of data, we can never
simultaneously eliminate both types errors.

4.1.1 The Size of a Test

The size of a test refers to the probability of committing a Type I error. A type I
error occurs when the null hypothesis is rejected, even though it is true. In the above
example, this is tantamount to concluding that β1 ‰ k despite the fact that β1 actually
is equal to k. Such a situation could occur, for example, if by chance a sample of the
population is chosen who all have higher than average values of β1
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The rate of type I error (or the size of the test) is typically denoted by α. We then
refer to 1 ´ α as the confidence interval. Typically we focus on values of α such as
0.052, implying that if we repeated a hypothesis 100 times (with different samples of
data of course) then in 5 out of every 100 times we would incorrectly reject the null
if the hypothesis were actually true. In cases where we run a regression and examine
whether a particular parameter is equal to zero, setting the size of the test equal to 5
implies that in 5% of repeated tests we would find a significant effect even when there
is no effect.

Figure 4.2: Type I and Type II Errors

1.96σ
4 6.5

x

y

In figure 4.2, the red regions of the left­hand curve refer to the type I error. As­
suming that the true parameter β1 is equal to 4 and the distribution of the estimator for
the parameter pβ1 is normal around its mean, we will consider as evidence against the
null any value of pβ1 which is outside of the range 4 ˘ 1.96σ (where σ refers to the
standard deviation of the distribution of the estimator). We do this knowing full well
that in certain samples from the true population (in 5% of them to be exact!) we will
be unlucky enough to reject the null even though the true parameter is actually 4. Of
course, there is nothing which requires us to set the size of the test at α = 0.05. If we
are concerned that we will commit too many type I errors, then we can simply increase
the size of our test to, say, α = 0.01, effectively demanding stronger evidence from
our sample before we are willing to reject the null.

2Lehmann and Romano (2005, p. 57) report that standard values for α were originally chosen given
that it allowed for fewer statistical tables to be produced when critical values where generally tabulated.
Currently, the ease of generating critical valueswith a computer is so easy that this is no longer necessary,
but the practice has stuck.
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4.1.2 The Power of a Test

Power in Detecting Impacts Versus a Scalar Null Hypothesis

These discussions of the size of a test and type I errors are entirely concerned with
incorrectly rejecting the null when it is true. However, they are completely silent on
the reverse case: failing to reject the null when it is actually false. This type of error is
referred to as a type II error. We define the power of a statistical test as the probability
that the test will correctly lead to the rejection of a false null hypothesis. We can then
think of the power of a test as the ability that a test has to detect an effect if the effect
actually exists. For example, in the above example imagine if the true population
parameter were 4.01. It seems unlikely that we would be able to reject a null that
β1 = 4, even though it is not true. As we will see below, considerations of the power
of a test are particularly frequent when deciding on the sample size of an experiment
or RCT with the ability to determine a minimum effect size.

The statistical power of a test is denoted by 1 ´ β, where β refers to the Type
II error. Often, you may read that tests with power of greater than 0.8 (or β ď 0.2)
are considered to be powerful. An illustration of the concept of statistical power is
provided in figure 4.2. Imagine that we would like to test the null that β1 = 4, and
would like to know what the power of the test would be if the actual effect was 6.5.
This amounts to asking, over what portion of the distribution of the true effect (with
mean 6.5), will the estimate lie in a zone which causes us not to reject the null that
β1 = 4. As we see in figure 4.2, there is a reasonable portion of the distribution (the
shaded blue portion) where we would (incorrectly) not reject the null that β1 = 4 if
the true effect were equal to 6.5.

In looking at figure 4.2, we can distinguish a number of features of the power of
a test. Firstly, the power of a test will increase as the distance between the null and
the true parameter increase. This is to say that we would have greater power when
considering 7 to β1 = 4 than 6.5 to β1 = 4 (all else equal). Secondly, we will have
greater power when the standard error of the estimate is smaller. As the standard error
gives the dispersion of the two distributions, as these dispersions shrink, we will be
more able to pick up differences between parameters. As the standard error depends
(positively) on the standard deviation of the estimate and (negatively) on the sample
size, the most commonway to increase power is by increasing the sample size. Finally,
we can see that by increasing the size of the test (ie changing the significance level
from p = 0.05 to p = 0.10), that this increases the power of the test. We can see this
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in figure 4.2, as by increasing the red area (that is, increasing the likelihood of making
a type II error), we shrink the size of the blue area (we reduce the likelihood of a type I
error). Here we see an interesting and important fact: we can not simultaneously both
increase the power and reduce the size of the test simply by changing the significance
level. Indeed, the opposite is true, as there exists a trade­off between type I and type
II errors in this case.

These three facts can be summed up in what we know as a “power function”. Al­
though figure 4.2 only considers one value (6.5), we can consider a similar power
calculation for a whole range of values. The power function summarises for us the
power of a test given a particular true value, conditional on the sample size, standard
deviation, and value for α. In particular, imagine that we have a parameter β1 which
we believe follows a t­distribution, and for which we want to test the null hypothesis
that H0 : β1 = 4. Let’s imagine now that the alternative is actually true, and βT

1 = θ,
where we use βT

1 to indicate it is the true value. We can thus derive the power at
α = 0.05 using the below formula, where we use the critical value of 1.64 from the
t­distribution:

B(θ) = Pr(tβ1 ą 1.64|βT
1 = θ)

= Pr

(
β̂1 ´ 4

σ2/
?
N

ą 1.64

ˇ

ˇ

ˇ

ˇ

βT
1 = θ

)

« 1 ´ Φ

(
1.64 ´

θ

σ2/
?
N

)
. (4.1)

where the final line comes from using the normal distribution as an approximation for
the t­distribution whenN is large. The idea of this forumla is summarised below in the
power functions described in figure 4.3. In the left­hand panel we observe the power
function under varying sample sizes (and values for θ), and in the right­hand panel
observe the power functions where the size of the test changes (and once again, for a
range of values for θ).

Power in Detecting Differences Between Groups

A particular case where power is often discussed is in the design of RCTs, where
one, ex­ante, must decide on a required sample size, with larger sample sizes imply­
ing larger costs in treatment, enumeration, and so forth. Generally, the sample size
is chosen to ensure a power to detect some minimum desired effect size between a
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Figure 4.3: Power Curves
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treatment and a control group. A nice discussion of this can be found in Athey and
Imbens (2017, pp. 102–104). If you are ever in the situation of implementing an RCT,
it is worth reading this carefully, along with the references cited therein such as Cohen
(1988); Murphy et al. (2014) or other readings discussed in Chapter 1 of these notes.
We will briefly review this consideration below, following the notation of Athey and
Imbens (2017).

Let τ signify the true treatment effect of receiving some treatment, and assume
that γ refers to the proportion of individuals receiving treatment, with the remaining
proportion 1 ´ γ acting as control units. For simplicity, assume that the variance of
outcomes is the same, indicate by σ2. In what follows, subscript t will refer to units
receiving treatment, and subscript c will refer to units acting as controls. Generally,
when conducting power calculations, we wish to determine the minimum sample size
necessary, N = Nc + Nt, to assure a rejection probability of at least β given that the
alternative hypothesis is true, and the true treatment effect is τ . We can start from the
standard result that the difference in means between treatment and control minus the
true treatment effect divided by the standard error of this difference is approximately
a standard normal distribution:

Ȳt ´ Ȳc ´ τ
a

σ2/Nt + σ2/Nc

« N (0, 1). (4.2)

Now, consider the t­statistic which will be tested when examining a null of a zero
effect:

t =
Ȳt ´ Ȳc

a

σ2/Nt + σ2/Nc

. (4.3)

Rearranging the result from 4.2, implies that 4.3 has an approximately normal distri­



4.2. HYPOTHESIS TESTING WITH LARGE SAMPLE SIZES 123

bution as:

t « N

(
τ

a

σ2/Nt + σ2/Nc

, 1

)
.

Considering the properties of the normal distribution, this implies that the probability
of rejecting the null of equality between groups at a signficance levelα if the true effect
is τ is:

Pr(|t| ą Φ´1(1 ´ α/2)) « Φ

(
´Φ´1(1 ´ α/2) +

τ
a

σ2/Nt + σ2/Nc

)
(4.4)

+Φ

(
´Φ´1(1 ´ α/2) ´

τ
a

σ2/Nt + σ2/Nc

)
,

where Φ refers to the standard normal CDF, and Φ´1 its inverse. The second term here
is small (strictly smaller than Φ(´Φ´1(1 ´ α/2)), for example strictly smaller than
0.025 when α = 0.05), and as such we will ignore it in what follows.

We wish to ensure a minimum power of 1 ´ β, so from 4.4:

1 ´ β = Φ

(
´Φ´1(1 ´ α/2) +

τ
a

σ2/Nt + σ2/Nc

)

which can be simplified as:

Φ´1(1 ´ β) = ´Φ´1(1 ´ α/2) +
τ

?
N

a

γ(1 ´ γ)

σ
,

finally allowing us to arrive to a formula for the effective sample size required to detect
a minimum treatent effect of τ , depending on the desiredα, β, γ and standard deviation
σ as:

N =
(Φ´1(1 ´ β) + Φ´1(1 ´ α/2))

2

(τ 2/σ2) ¨ γ ¨ (1 ´ γ)
.

A brief applied example illustrating such a calculation is provided by Athey and Im­
bens (2017, p. 104).

4.2 Hypothesis Testing with Large Sample Sizes

While in typical experimental analyses we are much more likely to be concerned
about a sample size which is too small to permit precise inference, we should—briefly
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at least—discuss the reverse case. In some circumstances wewill be workingwith very
large samples of data. This is particularly so when using quasi­experimental methods,
and for example, administrative datasets. In these cases it may not be at all uncommon
to work with millions or even tens of millions of observations.

In these cases, we will likely find that nearly everything is significant when con­
ducting hypothesis tests of the sort β = β0. This is of course not a reflection that the
truth surrounding a hypothesis depends on the sample size, but rather a feature of the
way we calculate test statistics. As our typical test statistics depend inversely on the
standard errors of estimated coefficients, and as these coefficients depend inversely on
sample size, then as the sample size grows it is easier for us to find that our test statistic
exceeds some fixed critical value.

This fact has beenwell pointed out and discussed in various important applied texts.
Deaton (1997) provides an extremely clear discussion of this phenomena, drawing on
a more extensive set of results from Leamer (1978). As the sample size grows, we
have increasing quantities of information with which to test our hypotheses. AsDeaton
(1997) points out, why then should we be content with still rejecting the null hypothesis
in 5% of the cases when it is true? As we have seen in the previous section, increasing
the sample size increases the power of a test, reducing the likelihood that we commit
a type I error. However, as we gain more and more power with the increasing sample
size, it seems inefficient to maintain fixed the size of the test, committing equally as
many type II errors. Rather, it is suggested by Deaton (1997), Leamer (1978) and
others that we should dedicate at least some of the additional sample size to reducing
the size of the test, lowering the probability of incorrectly rejecting the null. Lehmann
and Romano (2005) state this in the sense that when power is very close to 1, α can be
reduced without losing very much power at all, suggesting potentially a large gain in
size without much cost to power.

In practice, it is suggested that we should set critical values for rejection of the null
which increase with the sample size. While the full details of the derivation go beyond
what we will look at here3 the suggestion is actually rather simple. Rather than simply
rejecting an F or t test if the test statistic exceeds some critical value, we should reject
the test if:

F ą

(
N ´ K

P

)(
N

P
N ´ 1

)
or t ą

c

(N ´ K)
(
N

1
N ´ 1

)
,

3They can be found in Leamer (1978) and are based on Bayesian, rather than classical, hypothesis
testing procedures.
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where N refers to the sample size, K the number of parameters in the model, and P

the number of restrictions to be tested. Moreover, as Deaton (1997) points out, these
values can be approximated by logN and

a

logN respectively. Clearly then, these
tests set the rejection of the null in a way that it grows with the sample size, and so the
rate of type II errors will become increasingly small. For an empirical application in
which this methods is employed, see for example Clarke et al. (2016).

4.3 Multiple Hypothesis Testing and Error Rates

In the previous sections we have thought about hypothesis tests where we are in­
terested in conducting a single test, either based on a single parameter (a t­test) or
multiple parameters (an F ­test). Setting the rejection rate of a simple hypothesis test
of this type at α leads to an unequivocal rule with regards to acceptance or rejection of
the null, and a similarly clear understanding of the rate of type II errors. exceeds the
critical value at α, reject H0, otherwise do not reject.

However, we may not always have a single hypothesis to test. For example, what
happens if we have a single experiment (leading to one exogenous independent vari­
able) which we hypothesise may have an effect onmultiple outcome variables? This is
what we refer to as “multiple hypothesis testing”,4 and it brings about a series of new
challenges. To see why, consider the case of a single independent variable and two
outcome variables. If we run the regression once using the first outcome variable and
test our hypothesis of interest, we will have a type I error rate of α. However, if we
then also the regression a second time using the second outcome variable, the chance
of making at least one type I error in these tests now exceeds α, as both regressions
contribute their own risk of falsely rejecting a null. This may have very important con­
sequences for the way that we think about the effect of a policy. If we consider that
evidence of an effect of the policy on any variable in a broad class is suggestive that
the policy is worthwhile, the accumulation of type I errors will make us more likely to
find that a policy is worthwhile as the number of variables examined increases.

More generally, assuming for simplicity that each hypothesis test is independent,
the likelihood of falsely rejecting at least one null incorrectly in a series ofm tests when

4We should be quite careful inmaking sure that we understand the difference between a test where we
are intersted in knowing if there are various independent variables which may affect a single dependent
variable, in which case all we need is an F ­test, and one in which a single independent variable may
impact various dependent variables. It is the latter which we are concerned with, as in this case we will
be estimating various regression models with different outcome variables.
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all the null hypotheses are correct is equal to 1 ´ (1 ´ α)m. Thus, if 10 hypotheses
relating to 10 outcome variables are tested, the likelihood of at least one true null
hypothesis being rejected is 1 ´ (1 ´ 0.05)10 = 0.401!

This is clearly problematic, and something that we need to think about. However,
before continuing to examine a series of proposed solutions, we will discuss a series
of alternative error rates which are relevant when working with multiple hypotheses.
When considering multiple, rather than single hypothesis tests, it is not clear that there
is only oneway to think about the type I error rates associatedwith hypothesis tests. For
example, should we demand that our hypothesis tests with multiple variables should
set error rates based on falsely rejecting any one of the hypotheses in a group, or the
total percent of all hypotheses in a family, or some other rejection rate?

This gives rise to different error rates. Among these, the Family Wise Error Rate
(FWER), the Generalised FWER (k­FWER), and the False Discovery Rate (FDR).
The Familywise Error Rate (FWER) gives the probability of rejecting at least one
null hypothesis in a family when the null hypothesis is actually true. TheGeneralised
Familywise Error Rate (k­FWER) is similar to the familywise error rate, however,
now instead of the probability of falsely rejecting at least one null hypothesis, it now
refers to the probability of rejecting at least k null hypotheses, where k is a positive in­
teger. Finally, the False Discovery Rate (FDR) refers to the proportion of all expected
“discoveries” (rejected null hypotheses) which are true.

These different error rates are clearly different, with the FWER being more de­
manding than the FDR. In the family wise error rate, we demand that were we test all
our multiple hypotheses many times using separate draws from the DGP, only in α%
of the cases would we falsely reject any of these hypotheses. On the other hand, with
the FDR, we know that with a significantly large number of findings, α%will actually
be false. There exist a range of methods to control the FWER or the FDR. The type
of method used will depend largely on the context. Where any evidence in favour of a
hypothesis is instrumental in applied research, it may be most correct to fix the FWER,
as this way our error rates take into account the likelihood of falsely rejecting any null.
However, although the FWER is more demanding and hence gives rise to stronger ev­
idence where a null is rejected, it should be recognised that there will be circumstances
in which the FWER is simply too demanding to work in practice. Mainly, this is the
case when the number of hypotheses in a family is so large that it will be very difficult
to avoid falsely rejecting any hypothesis. In the sections below we discuss different
correction methods to control for these two rates.
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4.4 Multiple Hypothesis Testing Correction Methods

4.4.1 Controlling the FWER

There are a number of proposed ways to adjust significance levels or testing pro­
cedures to account for multiple hypothesis testing by controlling the FWER. Some of
these data from as far back as the early 20th century and are still widely used today. As
we will see below, alternative procedures are more or less conservative, with important
implications to the power of the test.

Inwhat follows, let’s consider a series ofS hypothesis tests, whichwe labelH1, . . . , HS .
Thus, the family of tests consists of S null hypotheses, and we will assume that S0 of
these are true null hypotheses. In the traditional sense, each of the S hypotheses is
associated with their own p­value labelled p1, . . . , pS .

The earliest type of multiple hypothesis adjustment is the Bonferroni (1935) cor­
rection. The Bonferroni correction simply consists of adjusting the rejection level from
each of tests in an identical way. Rather than rejecting each test if ps ă α, the rejection
rule is set to reject the null if ps ă α

S
. It can be shown that under this procedure, the

Family Wise Error Rate is at most equal to α (though likely much lower). To see why,
consider the following:

FWER = Pr

[
S0
ď

s=1

(
ps ď

α

S

)]
ď

S0
ÿ

s=1

[
Pr
(
ps ď

α

S

)]
ď S0

α

S
ď S

α

S
= α.

In the above, even if all the tested hypotheses are true (ie S = S0) we will never
falsely reject a hypothesis in greater than α% of the families of tests.5 However, this
is a particularly demanding correction. Imagine, for example if we are testing S = 5

hypotheses, and would like to determine for each whether their exists evidence against
the null at a level of α = 0.05. In order to do so, we must adjust our significance level,
and only reject the null at 5% for those hypothesis for which ps ă 0.01. It is simple to
see that as we add more and more hypotheis to the set of test, the global significance
level required to reject each null quickly falls.

However, one benefit of the Bonferroni (1935) correction is that it is extremely easy
to implement. It requires no complicated calculations, and can be done ‘by eye’ even

5The precise details of the proof of the above rely on Boole’s Inequality for the first step. While not
necessary for the results discussed in this course, if you would like further details, most statistical texts
will provide useful details, for example Casella and Berger (2002).
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where a paper’s authors may not have reported it themselves. Further, this procedure
does not require any assumptions about the dependence between the p­values or about
the number of true null hypotheses in the family. Of course, this flexibility comes at a
cost…We see below how we can increase the efficiency of multiple hypothesis testing
by taking these into consideration.

Single­Step and Stepwise Methods

The Bonferroni (1935) correction is an example of a single­step multiple hypothe­
sis testing correction methodology. In these single­step procedures, all hypotheses in
the family are compared in one shot a global rejection rate leading to S reject/don’t
reject decisions. However, there also exists a series of stepwise methods, which rather
than comparing all hypotheses at once, begin with the most significant variable, and
iteratively compare it to increasingly less conservative rejection criterion. The idea of
these stepdown methods is that there is an additional chance to reject less significant
hypotheses in subsequent steps of the testing procedure (Romano et al., 2010).

One of the most well known of these methods – which similarly maintains the sim­
plicity we observed in the Bonferroni correction – is the Holm (1979) multiple correc­
tion procedure. This method begins with a similar idea to the Bonferroni correction,
however is less conservative, and hence more powerful (indeed, it is a “universally
more powerful” testing procedure, meaning it will reject all the false nulls rejected by
Bonferroni, and perhaps more). The idea is that rather than making a one­shot ad­
justment to α for all S hypotheses, we make a step­wise series of adjustments, each
slightly less demanding given that certain hypotheses have already been tested. In
the Bonferroni correction then simply consists of rejecting the null for all Hs where
ps ď α/S.

Holm (1979)’s correction proceeds as follows. First, we order the p­values asso­
ciated with the S hypotheses from smallest to largest:

p(1) ď p(2) ď ¨ ¨ ¨ ď p(S),

and we name the corresponding hypotheses as H(1), H(2), . . . , H(S). We then proceed
step­wise, where each of the hypotheses is rejected at the level of α if:

p(j) ď
α

(S ´ j + 1)
@ j = 1, . . . , S. (4.5)
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Thus, in the limit (for the first test), Holm’s procedure is identical to the Bonferroni
correction given that the denominator of equation (4.5) equals S ´ 1+ 1 = S. And in
the other limit (for the final test), the procedure is identical to a single hypothesis test
of size α, given that the denominator of (4.5) is equal to S ´ S + 1 = 1.

Bootstrap Testing Procedures Up to this point in these lectures we have always
worked with test­statistics with a closed form solution. For example, a traditional t­
test in a regression model is simply calculated using the estimator and its standard
error, and both of these have simple analytic solutions (at least when estimating using
OLS). However, using an analytical test­statistic with proven desirable qualities is only
one possible way to conduct inference. Another, and indeed more flexible, class of
inference is based on resampling methods. These methods, which we have alluded
to only very briefly when discussing difference­in­differences models, include as a
principal component the bootstrap, of Efron (1979). Here we will briefly discuss the
idea of a bootstrap estimate for a confidence interval, before showing how we can use
a bootstrapped test statistic to produce more efficient multiple hypothesis tests.

The idea of the bootstrap is one of analogy. Normally in hypothesis testing we
are interested in the population. However, we only have a single sample from this
population, which we assume is representative. The logic behind the bootstrap is to
treat the sample as analogous to the true population. Then, by taking many resamples
from our original sample, and in each case calculating our parameter of interest, we can
build an entire distribution of estimates, giving a range for our point estimate. From
the work of Efron (1979) we know that the bootstrap is an asymptotically valid way to
approximate the true distribution.

In order to understand a bit more we will introduce some basic notation. Imagine
that we have a sample of size N , and parameter of interest we will call β. If we
estimate β in the original sample this gives us pβ. Now, imagine that we are interested in
creating a “new” dataset by taking a re­sample from our original data. This re­sample
simply chooses at randomN observations from our original dataset with replacement.
As the sample is taken with replacement (that is to say a single observation from the
original sample may be included 0, 1, or multiple times in the re­sample), this leads
to a different dataset. Using this new re­sampled dataset we can once again estimate
β, leading to a different estimate pβ˚1. each re­sample is a different dataset. Here we
use ˚ to indicate that our estimate comes from a re­sample, and 1 to indicate that it
is the first re­sample. Finally, we conduct the above re­sampling procedure (always
from the original dataset) B ´ 1 more times, resulting in B “new” datasets, and hence
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B estimates for β, denoted pβ˚1, pβ˚2, . . . , pβ˚B. In order to find the 95% confidence
interval for our original estimate pβ we simply order these bootstrap estimates pβ˚, and
find the upper and lower bound using the estimates at quantiles 2.5 and 97.5.

We can also use a bootstrap method to run hypothesis tests and calculate p­values.
Imagine, for example, that we wish to calculate the p­value associated with the test that
the above parameter β = 0. Using each of the b P B bootstrapped estimates we can
generate a distribution of t­statistics, where we impose that the null is true. Consider
the following calculation corresponding to each of the β˚ terms:

t˚b =
pβ˚b ´ pβ˚

σ(pβ˚)
.

Here pβ˚ refers to the average pβ˚ among all B resamples, and σ(pβ˚) refers to the stan­
dard deviation of these estimates. This then results in a distribution of t­statistics using
the resampled data which is what we would expect if the true β were equal to zero. All
that remains for our hypothesis test then is to compare our actual t­value (from the true
estimate pβ) with the distribution in which the null is imposed. This actual t­statistic
is simply based on our estimate pβ, which is standardised using the same standard de­
viation as above: t = pβ/σ(pβ˚). If the actual t­value, which we will call t, is much
higher or much lower than those in the null distribution, we will conclude that it is
unlikely that the null hypothesis is true. What’s more, we can attach a precise p­value
to this hypothesis test. All we need to do is ask “what percent of t­statistics from the
null distribution exceed the true t­statistic?” If this proportion is low, it is strong ev­
idence against the null. This results in the following calculation of a p­value, where
for simplicity we take the absolute value of the t­statistics given that we are interested
in values which are located in either extreme tail of the distribution. We denote this
value as p˚ to signify that it comes from the bootstrap calculation, and it is reasonably
easy to show that 0 ď p˚ ď 1, with a lower value of p˚ signifying greater evidence
against the null. We would typically work with a value such as α = 0.05 as a rejection
criteria.

p˚ =
#t|t˚| ě |t|u + 1

B + 1

Romano­Wolf StepdownTesting A final, and particularly efficient, means of fixing
the FWER is the Romano­Wolf step­down testing procedure, described in Romano and
Wolf (2005a,b). This procedure is increasingly used in the economic literature, for
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example in Gertler et al. (2014); Dobbie and Fryer (2015). This procedure is based on
a bootstrap testing procedure similar to that described above, however correcting for
the fact that we are conducting multiple hypotheses at once. It is a step down testing
procedure (similar to Holm (1979)), and so considers one hypothesis at a time, starting
with the most significant.

Consider the same S hypotheses considered above, ordered again from most to
least significant asH(1), H(2), . . . , H(S). For each of these hypotheses we will generate
a null distribution of test­statistics using the bootstrap method described above, andB
replications. This gives a series of resampling distributions t˚

1, t
˚
2, . . . , t

˚
S where each

of these is a vector of B values.

The Romano Wolf testing procedure is then based on using the information from
all of these re­sampling distributions to correct for the fact that multiple hypothe­
ses are tested at once. For the first hypothesis we construct a new null distribution
which, for each of the B resamples takes the maximum t­value associated with any
of t˚

1, t
˚
2, . . . , t

˚
S . We then compare the t value associated with H(1) to this null dis­

tribution, and reject the null hypothesis at α = 0.05 only if this t­value exceeds 95%
of the t­values in the null distribution. We then continue with the second hypothesis,
however now construct our null distribution using only the maximum of t˚

2, . . . , t
˚
S (ie

we remove the null t­distribution associated with those variables already tested). We
then follow a similar rejection procedure as above. We complete the Romano Wolf
test procedure once we have tested all the hypotheses in this way, where at each stage
we only consider the t˚­values coming from the hypotheses which have not yet been
tested. Thus, at each stage the rejection criteria becomes slightly less demanding, as
was the case in Holm (1979)’s procedure, but at the same time this procedure effi­
ciently accounts for any type of correlation among the variables tested.

4.4.2 Controlling the FDR

Procedures to control for the false discovery rate came to the fore much later than
those to control the family wise error rate. Nonetheless, both FDR and FWER proce­
dures are now frequently employed. As discussed in sections above, altohugh control
of the FDR allows for a small proportion of type I errors, it brings with it greater power
than that available in controlling for the FWER. An extremely nice analysis of these
methods in an applied context is provided by Anderson (2008) as well as a particularly
elegant discussion of the types of circumstances in which we may prefer FWER or
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FDR corrections.6

The earliest suggestion of controlling for the expected proportion of falsely re­
jected hypotheses (the FDR) comes from Benjamini and Hochberg (1995). They pro­
pose a simple methodology, and prove that its application acts to control the FDR.
They suggest the following procedure, where as above we refer to S hypothesis tests:
H(1), H(2), . . . , H(S), which we have ordered from most to least significant: p(1) ď

p(2) ď ¨ ¨ ¨ ď p(S). Suppose that we define some significance level for rejection (such
as 0.05) which we will denote q. Then, let k be the largest value of j for which:

p(j) ď
j

S
q. (4.6)

This leads to the rejection rule to reject all H(j) such that j = 1, 2, . . . , k, and do not
reject any of the remaining hypotheses. It is important to note that this is actually a step­
up rather than step­down procedure, as we start with the least significant hypothesis,
and step up until we meet the condition in equation 4.6.

More recent methods have shown how we can improve on this first generation
FDR control method (see for example the method proposed in Benjamini et al. (2006)).
Nevertheless, these methods still follow the basic step­up procedure described in Ben­
jamini and Hochberg (1995). A useful applied discussion of these various methods, as
well as their implemention, can be found in Newson (2010).

4.5 Pre­registering Trials and Replication Materials

When working on an empirical research paper, a researcher generally faces many
relatively banal choices, but which require a decision in arriving to models. To give
one simple example, variables can be treated in levels or logs, and often both options

6This discussion, from p. 1487 of Anderson (2008) and related to assessing the impact of early
childhood intervention programs is reproduced here:

“FWER control limits the probability of making any type I error. It is thus well suited
to cases in which the cost of a false rejection is high. In this research, for instance, in­
correctly concluding that early interventions are effective could result in a large­scale
misallocation of teaching resources. In exploratory analysis, we may be willing to toler­
ate some type I errors in exchange for greater power, however. For example, the effects
of early intervention on specific outcomesmay be of interest, and because overall conclu­
sions about program efficacy will not be based on a single outcome, it seems reasonable
to accept a few type I errors in exchange for greater power.”
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may be reasonable. Provided that such decisions are justified ex­ante, it is generally
perfectly fine to simply choose one or the other. However, if output to statistical models
is examined in order to justify the choice made, this is problematic, as standard testing
rates will break down. This is particularly concerning if there are ‘rule­of­thumb’
significance levels which researchers consider ‘important’ to advancing a particular
narrative. For example, the well known significance levels of α = 0.01, 0.05, or 0.10
may seem to be tempting targets, which of course runs entirely counter­intuitively
to the nature of seeking to test a hypothesis. There is evidence from the literature
that such “data snooping” procedures may occur. For example, the distribution below
collated by Brodeur et al. (2020) plotsZ­statistics from over 20,000 hypothesis tests in
nearly 1,000 papers in empirical economics. There is evidence of important heaping of
reported Z­statistics at points in the probability distribution corresponding to ‘standard’
significance levels, particularly Z = 1.96. Such a pattern would not be expected to
be observed if model specifications were made without seeing statistical results. This
heaping is shown to be particularly accute in certain types of empirical methods (for
example IV and difference­in­difference models).

Figure 4.4: Z­statistics from empirical economic­papers

Recently, there has been growing interest in the use of pre­registered trials in the
social sciences, and in experimental economics in particular (Miguel et al., 2014). The
idea of pre­registering a trial is that prior to examining any data or running any anal­
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ysis, the methodology and variables used should be entirely pre­specified, removing
any concerns that specifications are chosen ex­post to fit a particular interepretation.
Multiple online­registers exist including the AEA’s experimental registry, where re­
searchers can fully pre­specify their experimental hypotheses as well as their identifi­
cation strategy and the precise outcome variable to be examined.

A number of suggested steps to follow when pre­registering a trial (or writing a
pre­analysis plan), are laid out in Christensen and Miguel (2016). They also provide
a list of noteable studies using such a plan, which are becoming much more frequent
in recent literature. The use of a pre­analysis plan is particularly well­suited to an
experimental study or randomised control trial in which all details can be worked out
and defined before any data is collected. If writing a pre­analysis plan in economics,
Christensen and Miguel (2016) is an excellent place to start.

Despite their growing use, a number of issues surrounding pre­analysis plans are
laid out in Olken (2015). Among others, these plans may become ungainly, particu­
larly when the design of one test is conditional on the outcome of another. Also, the
extension to a non­experimental setting is not necessarily trivial. While in an exper­
imental set­up there is a clear “before” period in which the pre­analysis plan can be
written, with observational data this often is not the case. Nevertheless, and indeed as
pointed out by Olken (2015), there are multiple benefits of pre­analysis plans—beyond
just increased confidence in results—implying that the process of pre­specifying and
registering a trial may be a valuable process to follow in many settings.



Chapter 5

Beyond Average Treatment Effects...

Required Readings
Imbens and Wooldridge (2009): Sections 3.2­3.4
Angrist and Pischke (2009): Chapter 7

Suggested Readings
Dehejia et al. (2015)
Attanasio et al. (2012)
Deaton (2010)
Heckman (2010)

5.1 The Big Picture

The methods discussed so far in this lecture series, and the literature which draws
on these sorts of methods, focus very carefully on how to infer causality. Explicit
questions on what drives observed outcomes—receipt of treatment, or selection into
treatment—are deeply embedded in this framework. We have encountered this focus
throughout all these lectures, starting from the Rubin Causal Model on the first day.

Nevertheless, it would be farfetched to suggest that our studies in economics and
microeconometrics could ever be reduced simply to questions on causality, and even
more farfetched to suggest that it could again be reduced only to those things that are
directlymanipulable by the experimenter. In the first place, the type of questions which
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one can ask with these methods is finite. There are many big picture questions that we
would like to know about as empirical economists that can never be manipulated in an
RCT, and are tricky even when thinking in terms of the wider set of methods we have
discussed in other lectures.

Secondly, these methods do not lay claim to being able to respond to a question
without context. When we estimate a treatment effect using these methods, it holds
only in the context of the reform examined (that is, it is internally valid), and what’s
more, only when considering the average person subject to treatment. When we know
about schooling inMexico, or microcredit in Pakistan, or worms in Kenya, dowe know
anything about these problems in other places in the world? In a strict econometric
sense, no. The treatment effects literature (and particularly RCTs), receive critique for
having a lack of external validity, meaning that what we learn in one context will not
necessarily hold in another.1

There are many papers which debate the merits of reduced form work like that
described here, and more extensive econometric methods, including structural mod­
elling. The suggested reading by Deaton is a very good place to start. While we only
provide a brief introduction in these lectures, it is worth noting a couple of things in
closing: firstly about methods which increase the scope of these results, and secondly
about if (and if so, how) these results tie into the wider world of structual econometrics.

5.2 Heterogeneity and Quantile Treatment Effects

Firstly, we will consider how the heterogeneity of individuals can tie in with these
methods. In general, in our econometrics up to this point, we have been content to
estimate an average parameter—for example β̂ estimated by OLS, or some other type
of average treatment effect—however we have not thought too far beyond these aver­
age responses. At times, the average effect of a reform may be truly what we would
like to know. However other times, it certainly won’t be. For example, consider a
program targeted to schooling outcomes. If a large average treatment effect is driven

1It is interesting to think of the parallel between economics and the natural sciences in this case.
When something is demonstrated in a laboratory in the natural sciences, typically it is done so under
standardised conditions (such as “Standard Temperature and Conditions” (STC). In this sense, external
validity is not important, as these conditions can be replicated anywhere, and the validity of the result
can then be proved. In development economics, there is no such thing as STC! The local conditions and
institutions in one country, region, village etc., do not exist in other places. As such, a positive result
in one circumstance, while at least providing proof of concept, tells us very little about what would
actually happen were the same policy to be implmented in a different context.
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only by those with very high test scores, we may consider that the program is actually
not doing a good job in addresing problems in the true population of interest, such as
children at risk of not progressing, or learning key skills. Indeed, we may be particu­
larly interested with just a certain group of the population, such as those in the bottom
half or bottom quartile of schooling outcomes, if we are aiming to avoid particularly
poor results. In any case, and in general, there are certainly considerations of equality
which remain hidden when an average treatment effect is reported.

5.2.1 An Introduction to Quantile Regressions

A simple way to unpack heterogeneity in a regression framework is by estimating
a quantile regression. The quantile regression allows for the calculation of the impact
of some variable (or variables) x on some dependent variable of interest y at different
quantiles of the dependent variable y. Thus, rather than estimate a single β capturing
the impact of x on y, we can estimate a series of βq, capturing the impact of x on y at
percentile q of the variable y. These percentiles may be the median, or quartile 1 (the
lowest 25% of the population), or any percentile of interest. One important thing to
note is that we are not referring to different percentiles of the independent variables
x, but rather examining how outcomes vary across the distribution of the dependent
variable. Below we provide an example where the dependent variable of interest is
birth weight. In this case, for example, a quantile regression of a baby’s birthweight
(y) on the number of cigarettes that a mother smokes during pregnancy (x) would
provide a different estimate for each quantile of birthweight, not for different quantiles
of cigarette consumption.

In practice, quantile regression parameters are estimated for a particular percentile,
which we call q, and, as long as heterogeneity is present, will vary for each q. It is
common for the parameters to be displayed at a range of quantiles, for example as
documented in the graphs in Figure 5.1. The estimation procedure in quantile regres­
sion is via an absolute error loss function (rather than a squared error loss function, as
in OLS). As a result, quantile regression is less sensitive to outliers than OLS. In par­
ticular, the quantile regression estimator β̂q for percentile q minimizes the following
loss function:

QN(βq) =
ÿ

i:yiěx1
iβ

q|yi ´ x1
iβq| +

ÿ

i:yiăx1
iβ

(1 ´ q)|yi ´ x1
iβq|.

Note that here we are ordering the dependent variable yi, and consider the observations
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above the median in the left­hand term, and below the median in the right hand term.
Also note that we are “tilting” the optimization in favour of the lower or upper per­
centiles depending on the value of q. If q is a high percentile, we will give more weight
to the left­hand term, and so β̂q will take more into account information on observa­
tions above the median, and vice versa. In the special case of the median (q = 0.5),
this regression simply collapses to the least absolute deviation estimator. Additional
details of this estimator can be found in Cameron and Trivedi (2005, section 4.6) and
Angrist and Pischke (2009, chapter 7).

Additionally, a brief introduction to the quantile regression can be found inKoenker
and Hallock (2001) who document an example using US data on birth weights. Be­
low we replicate their empirical example, however using more recent data on all birth
weights in the USA in 2015. This is a quantile regression where the dependent variable
is each baby’s birthweight, and with 11 independent variables (plus a constant). The
quantile regression estimates β̂q are documented for each of the independent variables,
and at each percentile of the distribution of birth weight. These are presented along
with their standard errors (in grey), and the parameters from a linear OLS regression
(dashed lines). Note for example the interpretation of the variable “smoker” (bottom
left panel). While the mean impact of smoking on birthweight is around a 150 gram
reduction, this impact is largest in the lowest birth weight quantiles, suggesting that
smoking is particularly damaging for babies which are already at a very low birth­
weight. While we will not discuss the full range of coefficients, notice that there is no
impediment to using both continuous and discrete variables in these models.

5.2.2 Quantile Treatment Effects

Wewill begin by thinking about generalizing average treatment effects to treatment
effects at different points of the outcome distribution. This is very closely related
to the quantile regressions discussed above, but in particular, cast in the treatment
effect framework. As discussed above, the idea of a quantile regression is to look at
the estimated effect of some variable x at different points of the y distribution. The
Quantile Treatment effect (QTE) for quantile q is the effect of the treatment evaluated
at the quantile q (e.g. the 10th percentile, the median, the 90th percentile,…) of the
distribution of the outcome variable. Let us denote by τq the QTE for quantile q, so
that we have:

yi = τqTi + ui
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Figure 5.1: Quantile Regression and Birth Weight
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If the treatment is binary, just as theATE was the difference in mean outcome between
treatment and control, the QTE(q) is the difference between the quantiles q of the
distribution of outcome in treatment and control. Let us denote by FY1 and FY0 the
distribution function of outcomes in treatment and control respectively:
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Figure 5.2: Quantile treatment effects
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It is worth noting briefly that an important difference between this and theATE frame­
work is that QTE(q) will, in general, be different from the quantile of the differences
in outcomes between treatment and control. If we denote by FY1´Y0 the distribution
function of the difference in outcomes:

τq = F´1
Y1´Y0

(q)

In other terms “the quantile of differences is not the difference of the quantiles”. If you
cast yourmind back to non­linear regressionmodels, this may remind you somewhat of
the difference between averagemarginal effects of a probit or logit, versus themarginal
effect at the mean. Graphically, what we are trying to capture with a quantile treatment
effect at different parts of the distribution is displayed in figure 5.2.

Let’s consider the case of an RCT with perfect compliance. In that case the treat­
ment is exogenous with respect to potential outcomes, we can consistently estimate
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the QTE(q) by estimating τq through quantile regressions of the form:

yi = τqTi + εi

Quantile regressions use information which we previously threw out of the estimation
when estimating theATE withOLS at the start of this lecture series. The heterogeneity
in treatment responses was previously treated only as an issue of heteroscedasticity.
For example, if we assume that the treatment effect increases linearly with the outcome
then:

yi = µ0 + (µ1 ´ µ0)Ti + (γTiei + ei)

So that OLS estimates were consistent but the variance of the error term εi = (γTiei+

ei) increased with treatment. The distributions displayed in figure 5.2 display be­
haviour of this type. In this situation, our average tretment effect is hiding some im­
portant, and potentially very policy relevant, heterogeneity!

5.2.3 Changes­in­Changes

Athey and Imbens (2006) have proposed a way to use quintiles to implement a
strategy close to DiD. Let us assume that we observe two cross­sections of the treat­
ment group and control group at two periods, one before (t) and one after the treatment
(t+ 1).

They idea is to match at time t each quintile q in the treatment group with quintile
q1 in the control group with the same value of outcome, and then compare the change
in outcomes for quintile q to changes in outcomes for quintile q1 (see Figure 5.3).

Let us denote Fgt by the distribution functions of the outcome for group g (0 for
control and 1 for treatment) at time t. The change in change estimator is equal to:

ATTCIC =
1

N1

ÿ

iPG1

yit+1 ´ F´1
0t+1(F0t(F

´1
1t (F1t+1(yit+1))))

The change in change is the ATT under two conditions: monotonicity, i.e. treatment
does not change the rank and conditional independence (as for DiD methods).

Although the focus of Athey and Imbens (2006) is on developing a new method
to estimate average treatment effect, their method also allows to consider the effect of
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Figure 5.3: An Illustrative Example – Changes in Changes
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5.3 Treatment Effects and External Validity

These methods, while allowing us to examine heterogeneity within the reduced
scope of one particular program, still provide no guidance on whether a result in a
particular context is applicable in another location. Recent work is starting to think
about these questions in a more formal way.

One particular approach is suggested by Dehejia et al. (2015) who suggest an “ex­
ternal validity function”, which asks how far an experiment run in a particular context
may be from the mean effect in all locations. They examine the estimated effect of an
additional child on his or her mother’s labour supply in many contexts. While we will
not go into the technical details here, if this is relevant for your work, I encourage you
to consult the suggested reading.
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5.4 Sorting

When we spoke about the LATE we first began to think about sorting. In the case
of assignment to treatment and the LATE we allowed a certain type of sortig whereby
individuals could choosewhether to complywith a randomly assigned treatment status.
However, more generally, sorting is a pervasive issue which we must deal with when
considering economic and econometric models. Logically, in most cases, individuals
make decisions based on what they perceive is best for them. Or in other words, when
possible, individuals will “sort” themselves based on their potential outcomes.

Perhaps the most well known sorting model in labour economics is the RoyModel.
This is a simple model where individuals choose their ‘treatment status’ based on their
outcomes under two scenarios. In an econometric sense, we can think of this as a de­
cision made completely endogenously to the system under study. We will begin this
section by laying out the Roy Model as a general framework to think about a broader
class of sorting decisions, before turning to a particular model of thinking about treat­
ment effects under endogenous decisions and sorting: the Marginal Treatment Effects
framework.

5.4.1 The Roy Model

The classic Roy Model is laid out in an expositional paper (Roy, 1951) entitled
“Some Thoughts on the Distribution of Earnings”. The paper itself lays out all the
details of the model without formally writing it down, sketching a clear picture of
selection into (two) occupations based on the potential rewards which each person
faces in each occupation. Specifically, the paper speaks of a village where individuals
decide whether to fish or hunt rabbits, though abstractly the model applies to any cases
where individuals seek to consider their wellbeing in both states of a decision when
deciding between two options. In this sense, it is clear how it ties in with the “potential
outcomes” framework we are using in this course: here individuals will select into the
“treatment status” which is most beneficial to them given their particular payoff. To
the degree that an econometrician does not observe the payoffs an individual perceives
to both states of the world, their will be challenges in identifying casual effects. Here
I briefly layout out the Roy Model as a way to explicitly think about selection, before
turning to a more general set­up which considers estimation and identification where
individuals decide upon their treatment status.
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The Roy model lays out a simplified framework where each individual freely
chooses to fish or hunt rabbits (exclusively), and the market pays a price for fish de­
noted πF and a price for rabbits denoted πR. Thus, an individual who catches Fi fish
if they choose to fish or Ri rabbits if they choose to hunt would receive a wage of:

WFi = πFFi (5.1)

WRi = πRRi. (5.2)

Assuming for simplicity there is no uncertainty in these quantities, an individual would
choose to fish ifWFi ą WRi. Roy (1951) states that hunting is easier, whereas fishing
requires more skill. This is quite a simple model, but can be extended in many ways
(see for example a summary in Heckman and Taber (2010))

Individuals have different skill levels, which is to say that there is heterogeneity
in Fi and Ri. Specifically, Roy (1951) assumes that the log of “skills” (the level of
production of each good) are jointly normally distributed:[

log(Fi)

log(Ri)

]
„ N

([
µF

µR

]
,

[
σ2
F ρFR

ρFR σ2
R

])
. (5.3)

A key goal of the Roy model is understanding self­selection. Into which tasks will the
most efficient workers select based on this structure? Note that so far, we have not
assumed any particular type of correlation between skills in hunting and fishing (that
is to say, we have not assumed a sign for ρFR). To determine whether more efficient
workers are selected into particular tasks, say fishing, we need to determine whether
E[log(Fi)|πFFi ą πRRi] is greater thanE[log(Fi)], that is to say, whether the average
salary of individuals who fish is above the average salary of all potential individuals
if they would fish.

It can be shown (see Heckman and Taber (2010, p. 222))2 that the value of this
conditional expectation can be written as:

E[log(Fi)|πFFi ą πRRi] = µF +
(σ2

F ´ ρFR)

σ
λ

(
log(πF ) ´ log(πR) + µF ´ µR

σ

)
,

(5.4)
where σ2 is the variance of log(Fi/Ri), and λ(¨) is the inverse Mills ratio, which is
found in cases where a truncated normal distribution is considered. The important

2We won’t go through the notation here, though if you would like to see how this is resolved, Chris
Taber has some slides laying this out quite extensively. These are available at: https://www.ssc.
wisc.edu/~ctaber/751/roy.pdf, slides 22­29 are the most relevant for this calculation.

https://www.ssc.wisc.edu/~ctaber/751/roy.pdf
https://www.ssc.wisc.edu/~ctaber/751/roy.pdf
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thing to note here is that this expectation is equal to the mean of log(Fi) (the average
skill in the population), plus a second term, which describes the nature of selection.
Thus, if this second term is positive, this implies more skilled individuals select into
fishing, while if it is negative, less­skilled (in fishing) individuals select into fishing.
Note that the inverse Mills ratio is always positive, and standard deviation σ must be
positive. So the nature of selection depends entirely on the sign of (σ2

F ´ ρFR). Note
also that σ2 = (σ2

F ´ρFR)+(σ2
R ´ρFR) ą 0, so one of the two terms must be positive

(and both can be positive), implying positive selection into at least one of fishing or
hunting. Based on all this, a number of general results can be summarised:

• If fishing is harder and there is a larger variance in fishing ability in the popula­
tion σ2

F ą σ2
R which must imply positive selection into fishing.

• In the case of hunting (the lower variance occupation), the nature of selection
depends on the value of ρFR relative to σ2

R.

– If ρFR (hunting skill and fishing skill are negatively correlated), there will
be positive selection into hunting too

– If hunting and fishing skill are perfectly correlated, given that σ2
F ą σ2

R,
then ρFR must be larger than σ2

R, and there will be negative selection into
hunting

– For cases in between negative correlations and perfect positive correla­
tions, either case can arise.

This simplified model thus already gives some framework to think about selec­
tion and how a population of individuals will behave if they are seeking to maximise
payoffs among choices. There are many extensions to these models, and applications
where it is used as a basis for estimation with real data (for example Taber and Vejlin
(2020)). However, here we lay out the Roy model as a precursor for thinking about
heterogeneity, given its importance in thinking about marginal treatment effects, and
the value for particular individuals of selecting into one or other case. In the case laid
out here, certain individuals may have a much higher wage in one of two occupations
and hence have much to gain from choosing this, while others may have reasonably
similar wages in both occupations, and thus less to gain from their occupational choice.
This is something we turn to examine now.
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5.4.2 ‹ “Marginal Treatment Effects” and Other Relevant Quan­
tities

The Marginal Treatment Effect (MTE) framework starts with a more flexible ver­
sion of a Roy­style model. Heckman and Vytlacil (2005), who formalize the marginal
treatment effects framework, refer to the generalized Roy model, which augments the
above standard Roy model with a component capturing the cost of receiving treatment.
We now define Z as observable costs of receiving treatment, such that an individual
would select into treatment if their benefits of treatment exceed the benefits of not
electing to receive treatment, net of any costs. The interest of this model is in allowing
very flexibly for selection into treatment, and considering which treatment effects can,
and ideally should, be estimated. The decision of whether an individual should elect
to receive treatment or not depends on their benefits with and without treatment (Y1

and Y0), as well as their costs to access treatment. These elements can be written as:

Y0 = µ0(X) + U0 (5.5)

Y1 = µ1(X) + U1 (5.6)

C = µC(Z) + UC . (5.7)

Note that here potential outcomes with and without treatment can depend on observ­
able factors (X), as well as unobserved error terms U0, U1, which are assumed to be
mean 0.

At its heart, the MTE framework is about selection into treatment, and so what
we wish to consider are treatment decisions. For this we define D as an individual’s
treatment decision (1 if treated, 0 otherwise), and a variable D˚ capturing their net
benefits of treatment:

D˚ = µD(Z,X) ´ UD, D = 1 if D˚ ě 0, else D = 0 (5.8)

Note that this views selection into treatment as a latent variable model, similar to latent
variables underlying standard binary choice models such as the probit or logit. Based
on the particular form in 5.5­5.7, µD(Z,X) in equation 5.8 would be equal to µ1(X)´

µ0(X) ´ µC(Z), while UD = U1 ´ U0 ´ UC refer to the non­observables.

Based on this, we can understand how an individual will make their choices – their
D˚ will be greater than or equal to 0, implying selection into treatment, if µD(Z,X)´

UD ě 0. The term on the left­hand side of this equation, µD(Z,X), is simply the
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observable net benefits for treatment for an individual with characteristics X and Z,
while the term on the right­hand side are unobserved characteristics which affect their
likelihood of opting into treatment. An individual with high observable benefits from
treatment will likely opt into treatment, unless they have a particularly high draw from
the unobservable UD term, which is sufficient for them to not wish to opt in.

The use of Z in relying to costs is not casual. In Heckman and Vytlacil (2005), Z is
assumed to affect the likelhood of opting into treatment, while also being independent
of U1, U0 and UD. Thus, these “cost of treatment” components are actually viewed
as an instrumental variable. This would be particularly clear if Z was a random as­
signment to treatment, and brings us back to the setting described in section 3.1 when
discussing IV and the LATE. Where Heckman and Vytlacil (2005) seek to go con­
siderably beyond LATE, however, is in formally modelling selection into treatment,
and thinking about the resulting estimands. Specifically, the central interest in work­
ing with marginal treatment effects is in understanding variation in the probability of
receiving treatment givenZ (the “costs” of treatment). They defineP (Z) as the proba­
bility of receiving treatment given any particular vaue ofZ, or P (Z) ” Pr(D = 1|Z).
This is, by definition, just a propensity score, given that it relates the likelihood of re­
ceiving treatment with some observable characteristic(s). The use of propensity score
here is very different to in the matching literature we discussed earlier in these notes.
Here it is an underlying statistic of interest.

From equation 5.8, we know that the probability of selection into treatment for an
individual with a given value of Z is Pr(D = 1|Z) = Pr(µD(Z,X) ą UD). Here,
UD is the unobservable term, and so the question of the probability that an individual
with costs Z is in treatment can be written as:

P (Z) ” Pr(D = 1|Z) = FUD
(µD(X,Z)).

While the notation of this final term is somewhat complicated, the interpretation is
relatively simple. F (¨) refers to the cdf of the distribution of unobservables (UD), and
µD(Z,X) is the rexpected return from treatment at point Z. For an individual with
cost Z, the probability of being in treatment is just the probability of getting a draw
from the distribution of unobservable aversion to treatment (UD) which is below the
returns from treatment µD(X,Z).

To define the MTE, we will following Heckman and Vytlacil (2005) and use ∆ to
denote the treatment effect. For example, the ATE is simply E(Y1 ´ Y0) = ∆. The
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MTE, on the otherhand is defined as:

∆MTE(x, uD) ” E(∆|X = x, UD = uD).

This is, the MTE is just a treatment effect at a specific point uD! In reality, we may be
interested in the variation in the marginal treatment effect across the entire distribution
of UD. These MTE have a clear interpretation given what we know about UD. For
points very low in the distibution of uD, this is the effect of treatment for individuals
with values of non­observables which may be very probable that they will participate
in treatment. On the other hand, for very high values of uD, the value of µD(X,Z)

would need to be particularly large to convince individuals to participate.

Heckman and Vytlacil (2005) state that “[t]he MTE is a choice­theoretic building
block that unites the treatment effect, selection, and matching literatures.” They refer
to it as a ‘building block’ because the MTE can be linked to many other treatment
effects of interest including the ATT, the ATE, the ATU (average treatment effect on
the untreated), the LATE, and more. Specifically, these other treatment effects are
(weighted) averages of the MTE at specific points of UD. Heckman y Vytlacil note
that these weights can be derived, and in this way we can understand a whole host
of treatment effects in terms of the MTE. For example, a specific example of this is
provided in Figure 5.4 below. The marginal treatment effects are particularly high at
low draws of UD, because many of these individuals will have high values µD(X,Z),
implying greater net benefits on average, and they become lower as higher draws ofUD

are observed, because on average, individuals will move closer and closer to being all
just marginally convinced to take up treatment. Theweights which particular treatment
effects assign to these MTEs are then graphed in dotted lines. In the case of the ATE,
we will simply be taking an average over the entire population, so weights are equal.
However, in the case of at ATT, wewill be only considering individuals who effectively
take up treatment, which will be much more likely for those with low draws of UD.

Note finally, that using this framework, there are many other treatment effects of
interest one may wish to consider. Carneiro et al. (2010) discuss the policy relevant
treatment effect (PRTE), which comes from considering a policy which changes the
costs of accessing treatment. A specific policy may move certain individuals from
untreated to treated, and the PRTE is just the average MTE of those indiviudals who
are convinced by a policy to move into treatment. Another specific example is the
LATE we already know quite well. In words, as we know the LATE is the ATE for
individuals who are convinced to change fromD = 0 toD = 1whenZ is manipulated
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Figure 5.4: Marginal Treatment Effects, and weights for the ATE, ATT and ATU
(Heckman and Vytlacil, 2005)

exogenously from z1 to z. This implies that the LATE is:

E(∆|X = x,Dz = 1, Dz1 = 0),

which is instrument specific depending on the movements traced out by a particular
instrument. In terms of the MTE, we can thus define LATE as:

∆LATE(x, uD, u
1
D) = E(Y1 ´ Y0|X = x, u1

D ă UD ă uD),

where uD and u1
D refer to shifts generated by the instrument.

There is a considerable body of workwhich focuses on estimatingMTEs, though in
the interests of space we wont delve into this deeply here. If you wish to review a deep
coverage of this, I would refer you to Heckman and Vytlacil (2005) (a particularly
heavy reference), or Carneiro et al. (2010). Potentially a more useful jumping off
point is Cornelissen et al. (2016) who provide an overview, with a particular focus
on the practice of MTEs and estimation. Some quick points to keep in mind related
to estimation is that while we require an instrument (Z) to consider costs, a standard
linear IVmodel will not be enough, as we know from prior chapters that this will get us
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to the LATE. The solution for estimating MTEs fully is to use “Local IV” procedures,
which implement IV in different points of the distribution of P (Z). In practice, this
often requires non­parametric estimation procedures, or parametric assumptions about
the original model forU0,U1 yUZ . A useful computational resource (focused on Stata)
is provided by Brave and Walstrum (2014).



Chapter 6

‹ Machine Learning

Required Readings
Athey and Imbens (2019)
Mullainathan and Spiess (2017)
Suggested Readings
Kleinberg et al. (2017)
Cengiz et al. (2022)
Baird et al. (2022)
Deryugina et al. (2019)
Gentzkow and Shapiro (2010)

As its name suggests, machine learning is about using a series of instructions to
learn something about a particular setting. The learning generally refers to prediction
– a “machine” wishes to “learn” about a context such that it can provide a reasonable
prediction in cases it has not necessarily seen before. In our setting, the “learning”
often refers to working out how to make the best prediction possible about a particu­
lar outcome, for example a counterfactual state of the world. This can depend upon
parameters which we estimate from a given dataset, but unlike the previous chapters
where we have wished to estimate regression or other parameters, here learning can
be a fair bit broader. We will see that two obvious extensions in the ‘learning’ pro­
cess is that firstly, learning can also be about which variables, or inputs, to include
in models, and hence both the parameters, and the variables to include can be part of
the learning process. Secondly, the process of learning – or “training” – is often con­
ducted on one dataset or partition of data, and the actual prediction can be conducted

151
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on another dataset or partition of the data. This process of training is conducted be­
cause when prediction is the end goal, if training and estimation were done on a single
data base, extremely good predictions could be made by including many variables in
the model. However, many of these variables may be simply capturing noise which is
specific to this particular database, and hence the prediction would not generalize to
other settings. This is a case of overfitting, which machine learning wishes to avoid.

Machine learning (hereafter ML) has many applications, however here we will fo­
cus on the applicationwhich is particularly relevant for our needs, which is in usingML
methods to address questions of causality. Indeed, we will see that at times, ML can be
well suited as extensions to models and methods we’ve discussed in previous chapters.
The general structure of this chapter will be two­fold. Firstly, we will briefly layout
some general ideas and concepts about ML, as well as discuss some tools which are
frequently encountered. Here, we will focus specifically on the tools which are found
in economic applications, as this will be a basis for later models discussed in the chap­
ter. This will be an overview, and the goal here is not delve into these tools at great
depth, as there are entire textbooks dedicated just to this point. For example, a much
broader background on these tools and general principals can be found in the textbook
of Hastie et al. (2017). Secondly, we will then discuss the application of ML in eco­
nomics, with a particular interest in methods which can be sought to address causality
in microeconometric applications. Particularly nice overviews of this theme can be
found in the review papers of Mullainathan and Spiess (2017), which is more general,
Athey and Imbens (2019), which provides more specific examples of ML methods,
as well as an earlier review of Varian (2014) which lays out a number of key consid­
erations, focused broadly on the growing use of big data in economics. A chapter is
also available in Hansen’s recently published econometrics textbook (Hansen, 2022),
which was previously available online.

6.1 An Introduction

6.1.1 The Logic Behind Machine Learning

Most introductions to Machine Learning make clear that a key difference in ML
compared with the econometrics we have encountered so far is its focus on prediction.
Based on the common framework of OLS and the desire to causally estimate parame­
ters of interest which we generically call β, Mullainathan and Spiess (2017) state this
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as:

“Put succinctly, machine learning belongs in the part of the toolboxmarked
py rather than in the more familiar pβ compartment.”

Probably not surprisingly, it turns out that this implies entirely different considera­
tions and desires. While in econometrics, we would generally be concerned if we
were estimating systematically biased parameters pβ, in ML we are not concerned with
the parameters per se, but rather how these are used generate good predictions from
data. While these predictions py may be regression­based predictions of a continuous
variable, they may also be predictions of some categorical outcome, in which case
the prediction is a classification task, and may be predicted in quite different ways –
for example while often based on observed information on y, in certain circumstances
information on y may not be systematically observed.

Given that in ML, the goal is to predict outcomes, it will be important to have some
way to measure good preduction. Generally, this is done by seeking to minimize some
loss function, or error rate. This loss function can be written asL(py, y), where a greater
“loss” is associated with predictions of a given y which are far away from its true
value. However, rather than minimizing the loss associated with a particular observed
dataset, which could be easily achieved by setting py = y, we wish to explain outcomes
“out of sample”, or with a new sample of data which we presume is drawn from the
same distribution as the data which we use to generate predictions. To consider one
example, imagine that we have a vector of variablesX which we believe are related to
an outcome of interest y, then we may define a loss function as: L( pf(X), y). Our goal
in machine learning will be to generate a function pf which will have low prediction
error on new data points, which can be quantified using the expected prediction error:

Ey,x[L( pf(X), y)],

where the expectation Ey,x seeks to emphasise the interest in considering data outside
of original training data. Such criteria need not be very complicated. Common choices
which onemay seek tominimize are the squared error loss, or the absolute error, which,
respectively imply defining the loss function as below:

Lsquared error( pf(X), y) = (y ´ pf(X))2 (6.1)

Labsoute error( pf(X), y) = |y ´ pf(X)|, (6.2)

based on predicted outcomes pf(X) and observed outcomes y.
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Some Points on Jargon There are a number of terms which are specific to this liter­
ature, despite having other more common labels in standard econometrics. A number
of such terms are summarised in Table 6.1.

Table 6.1: Some Standard ML Terms and their Econometric Counterparts

“Econometric” ML Notes
Label Label

Estimation Training Process of fitting a model which
will be applied for prediction with
new datax

Estimation sample Training sample A sample of data which will be used
to generate a prediction, but not nec­
essarily for final estimation

Covariates (Xi) Features Independent variables (in cases
where these are used)

Regression parameters Weights Estimated coefficients on indepen­
dent variables (in cases where these
are used)

There are a large number of ML­specific terms which are encountered in partic­
ular models, and we will discuss these below in section 6.2 when encountering these
models. More broadly, Machine Learning techniques are often classified as either “Su­
pervised Learning” or “Unsupervised Learning”. The term supervised learning refers
to cases where both dependent variablesXi and outcome varibles yi are observed, and
hence prediction is “supervised” by the actual outcome we seek to predict. Unsuper­
vised learning, on the other hand, refers to cases where we simply observe dependent
variables or features of data, and we seek to classify observations in some useful way
based on their features. In general, most of the applications of ML in economics are
based on supervised learning, and most of our discussion here will centre around su­
pervised learning. However, we will briefly touch on unsupervised learning when
discussing text analysis towards the end of this chapter.

6.1.2 Key Considerations for Application to Economics

The standard waywe have thought in these notes so far – and generally the standard
way we think in econometrics – is that we wish to identify some causal parameter of
interest. This is clearly different to the goals of ML, which is cast broadly as a predic­
tion problem. Nevertheless, ML is finding a growing place in research in economics,
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and perhaps surprisingly this is particularly active in the literature interested in esti­
mating treatment effects! Thus, while we are not necessarily always after prediction,
it turns out the ML can be applied fruitfully. Of course, if prediction is the main aim
of a paper, ML tools will likely work even more directly to help us in our task.

A chapter from Athey (2018) makes a number of very nice points on the incorpo­
ration of ML in economics. In this chapter, Athey notes that ML can add considerable
value when a goal of research is semi­parametric estimation (as we will often be work­
ing with many quite local areas of data), when there are a large number of covariates
relative to observations (a point we turn to in the section below), and when functional
forms need to be determined in some underlying strategy.

There are a number of problems in economics where the empirical challenge is
actually focused on prediction. A discussion of these themes is provided in Kleinberg
et al. (2015) who discuss “Prediction Policy Problems”, and note the importance of
ML tools in providing the best quality answers to questions being studied. They list a
number of such problems such as predicting teacher value added in education, predict­
ing unemployment length spells to support job seekers, optimally targeting regulation
such as health inspections, predicting high risk groups to receive social policy inter­
ventions, and assessing credit­worthiness of potential borrowers. They additionally
work through an illustrative example studying medical decisions of joint replacement
surgery, and patient characteristics and potential benefits from such surgeries. Addi­
tional examples are provided in Athey (2017), though she notes that while the applica­
tion of “off­the­shelf” ML algorithms will often be simple, bridging the gap between
making a prediction with ML, and making an actualy decision for policy will be much
more challenging, for a number of reasons including interpretation of evidence, con­
cerns for fairness and non­discrimination, and data manipulation, among others.

However, Athey (2018) suggests that beyond these pure prediction problems, many
of the big applications of ML in economics may come directly in the treatment effects
literature, where the tools of ML can be applied to causal inference. She notes that a
movement is already under way in which tools fromML are applied to settings such as
the estimation of treatment effects (and treatment effect heterogeneity) in randomized
experiments, the consideration of conditional unconfoundedness, instrumental vari­
able models, panel data settings including difference­in­difference style designs, and
regression discontinuity models. Tools fromML can be applied to potentially generate
a richer understanding of variation in data, correctly isolate causal effects, or consider
optimal treatment assignment. In section 6.3 we will examine more specifically how
ML can be used in a literature focused on the identification of causal effects, however
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first will focus on a number of general considerations when applying tools from ML,
as well as a discussion of some of the main tools applied in economics.

6.1.3 New Points of Focus

Before turning to specific models or algorithims which are frequently used in Ma­
chine Learning and their implementations in economics, we will discuss a number
of general principles which are central considerations in ML, but not such prominant
concerns in the econometric methods we’ve been using so far.

Model Selection, Evaluation and Tuning Parameters

In econometrics, model selection is often conceived as something which will be
driven by economic theory, and hence estimationwill proceed based off a pre­conceived
model. In ML, model selection is a key process in generating predictions. As laid out
above, ML seeks to determine the model which best explains some particular outcome
in unseen data, and as such, we will need to evaluate models in order to select that
which best meets some criteria. These models are often based on decisions relating to
tuning parameters, which are values on which models depend, but which need to be
optimized, or ‘tuned’, to a given empirical example. These tuning parameters may be
things such as the number of variables to be included in models, the number of splits
of data which one may wish to consider, or parameters which seek to determine how
much to penalize the inclusion of additional variables in models to avoid models be­
coming overly complex. This process of model selection and tuning is thus an integral
part of ML.

Cross validation One particular form to evaluate models, or evaluate tuning param­
eters in model selection is through the use of Cross Validation. The idea behind cross­
validation is that if we seek to find models with the best out of sample fits, we can
consider this out of sample fit by estimating models on one sample, and then testing
their fit on other samples. Cross validation does this by working with multiple selected
samples of a given data set. There are a number of ways to conduct cross­validation,
including Leave­One­Out cross­validation, and K­fold cross­validation as particularly
frequent examples.
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To see how cross­validation (CV) works, we will discuss K­fold CV, and imagine
that we have a loss function which we seek to minimise, for example a squared­error
loss as in equation 6.1, which depends upon particular decisions related to the predic­
tion function pf . K­fold CV then proceeds in the following steps:

1. Randomly split the dataset in aroundK equal parts, each having approximately
Nk « N/k observations. We call each of theseK segments of the data a “fold”,
and denote as Ik the observations in fold k.

2. For all folds in k = 1, . . . , K conduct the following steps:

(a) Remove fold k from the data, leaving the remainingN ´Nk observations

(b) Calculate the proposed estimator pf(´k) using this data, where the subscript
´k makes clear that this prediction does not depend on the data in fold k.

(c) Now, apply this prediction function which was based off data excluding
k to the fold of data in k. This calculates the predicted outcome as: py =
pf(´k)(Xi) for all i P Ik.

(d) Calculate themean squared error loss for fold k as: MSEk =
1
Nk

ř

iPIk
(y´

py).

3. The mean squared error loss can then be calculated summing the squared error
loss for each fold: MSE = 1

K

řK
k=1MSEk

Note here then that idea of cross­validation is simply to assess a model in its ability
to predict outcomes for observations within a dataset but not used for model ‘training’
based on the models determined from the rest of the data. In practice, given that ML
algorithms depend on certain tuning parameters, one can conduct CV across many dif­
ferent values of the tuning parameter, and then settle on the parameters whichminimize
the MSE found in CV. In practice, often 10 folds are used for k­fold cross­validation,
though there is no hard­and­fast rule used in all circumstances. Further details of cross­
validation, including some properties and alternative procedures such as LOOCV can
be found in Hansen (2022), who has a nice chapter discussing model selection.

Regularization and Overfitting

A common concern in prediction models is that of overfitting. When potentially
many explanatory variables are present, and we wish to predict some outcome of in­
terest, in our sample of data we can generate trivially good predictions by including
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many variables. Indeed, this is possibly something that you have seen when discussing
theR2 in standard regression models. In a sample ofN observations, if a constant and
N ´ 1 (non multicolinear) independent variables are included, the R2 will always be
driven to 1. However, in ML the interest in generating a good prediction is not for
in­sample prediction, but rather for predicting out of sample. While it may seem like
the inclusion of irrelevant variables in a prediction should not matter, it turns out that
it does, as if many irrelevant variables are included in predictions given that they have
a good in sample fit, when the model is applied out of sample, the irrelevant variables
significantly increase the variance of predictions.

Thus, a challenge in ML is in seeking variables which truly explain the dependent
variable of interest, and not those which simply pick up random noise. In practice,
parsimony is often preferred, with more simple models doing a better job of explaining
out of sample outcomes. For this reason, regularization is a common feature of ML
algorithms. Regularization is a process by which complexity of a model is penalized.
We will see particular examples of this in section 6.2 below, where often this will
consist of adding a term to the loss function which we desire to minimize which makes
it more ‘expensive’ to include additional variables in predictions, favouring parsimony
in prediction models. The way that these regularization terms are incorporated is often
model­specific, via the definition of tuning parameters, with these tuning parameters
determined by CV or other model selection criteria.

k ą N and Sparsity

Finally, as discussed in Varian (2014), machine learning is often conducted in the
domain of big data. Growing availability of large datasets in economics makes this
particularly useful, given that ML often has a focus on computational tractability of
models even when datasets are very large. Here, it is not simply the case that large
datasets refers to cases where the number of observations, N , is very large, but also
cases where the number of variables (or features) k is very large. As one example, we
can consider super­market scanner data where many different purchases are observed
(the N ), with records of the number of purchases of a large number of products (the
k).

A particularly nice feature ofML is that many algorithms can work with cases even
where k ą N ! In models we work with in standard econometrics, this is generally
not the case. For example, consider the OLS estimator pβ = (X 1X)´1X 1y. In cases
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where k ą N , this quantity cannot be estimated, given that X 1X will not be of full
rank, and hence cannot be inverted. In many ML algorithms, including the Lasso and
Ridge regression discussed below, the fact that k ą N is not an issue, as models will be
regularized, often leading to a more reduced set of variables to be included. In general,
settings where the number of variables is large relative to the sample size are referred
to as high dimensional methods (Belloni et al., 2014).

A related point is that in many settings, even though k may be large, the under­
lying model may be approximately sparse, which implies that many of the potential
explanatory variables actually are irrelevant in explaining the outcome of interest. In
this case, an ML algorithm may seek to determine both which variables are relevant,
as well as generate a prediction based on these (relevant) variables. These algorithms
will determine which variables are relevant in prediction in a clearly defined way, and
so are likely preferrable to ad hoc assumptions made by researchers related to model
selection (Athey and Imbens, 2017). Whether data is indeed sparse or “approximately
sparse” (Belloni et al., 2014) is an assumption, and certain models are built on top of
this assumption. This leads to a number of considerations and challenges in inference,
discussed at more length in Belloni et al. (2014).

6.2 Some Key Methods

6.2.1 Regularised Regression and Related Methods

Regularised regression models are models which seek to explicitly penalize the
inclusion ofmany variables. Suchmodels are useful in cases where we seek to generate
good predictions, as this can help to avoid over­fitting. For example, if we seek to
generate a prediction such as py using some sample of data and an underlying regression
model, all variables will allow our prediction to explain more of the underlying y,
unless they are perfectly multi­colinear with other variables. However, if we then seek
to use the coefficients estimated from this procedure to predict “out of sample”, wemay
find that our prediction performs relatively poorly, given that while a small number of
variables included in our original model actually do have good predictive power for y,
many other coefficients were simply random noise, giving a clear case of overfitting.

By using regularization, we can seek to simplify our models, including variables
in predictions only if they exceed specific thresholds, or otherwise reducing the im­
portance of variables in generating predictions. Regularisation can also useful in cases
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where the number of potential variables is large, in certain settings even where k ą N ,
as it allows for a reduced number of variables to be selected for inclusion in a final
model. Regularised regression models are frequently found in machine learning, and
in applications of ML in economics. Below we will consider two such regularised
regression methods, the Ridge and the Lasso, which are particularly frequently en­
countered.

The Lasso

A frequently used shrinkage estimator is the Lasso, which stands for “least absolute
shrinkage and selection operator”. The Lasso seeks to estimate parameters pβ which
resolve the following equation, where X is a matrix of N observations p covariates,
and a constant term:

argmin
β

N
ÿ

i=1

(Yi ´ X 1
iβ)

2 subject to
p

ÿ

j=1

|βj| ď t (6.3)

Here the first term of this minimization is simply a residual sum of squares (as we
know well from OLS), but the second term is new, and controls the shrinkage in the
model. As this shrinkage term requires all parameters to sum to no more than t, if
progressively smaller values of t are imposed, this effectively “shrinks” the parameters
towards zero, making certain parameters exactly zero, or shrinking them away from
their unconstrained values. This second term can be re­written as }β}1, or the ℓ1 norm,

following the standard definition of an ℓp norm as: }x}p =
(

řN
i=1 |xi|

p
)1/p

. We will
encounter other norms below.

To view this as a single optimization problem, the loss function for the Lasso can
be re­written in Lagrangian form as follows:

argmin
β

#

N
ÿ

i=1

(Yi ´ X 1β)2 + λ(||β||1)

+

(6.4)

where the Lagrangian form refers to the fact that we are optimizing subject to con­
straints. Note here that while the Lagrangian form of the Lasso in equation 6.4 is
simply an alternative way to write the optimization problem we are seeking to resolve
in equation 6.3, this does not imply that λ and t are identical. While λ and t do have a
one to one correspondence in a given problem and dataset (Hastie et al., 2017), when
the parameter t from equation 6.3 is smaller, this will imply shrinking parameters more
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towards zero, or setting more parameters at zero, while in the case of equation 6.4, a
larger value for λ, implying that the imposed constraints bind more tightly, will im­
ply shrinking parameters more towards zero. Typically, in computational implemen­
tations, one specifies λ (rather than t), which as discussed below, can be optimally
chosen through cross­validation.

One thing to note here is that, unlike in OLS, the scaling of variables in the Lasso
is not innocuous. If a variable is multiplied by a constant, this will have implications
for the parameter estimates and hence the estimation procedure in 6.4. For this reason,
generally all variables are standardized prior to their inclusion in the Lasso. Note that
if all variables are standardized as (mean zero) z­scores, this will imply that the model
has a constant term of zero, and as such the constant can be omitted from the model.
Alternative models have been proposed such as a Lasso with ‘penalty loadings’ in
Belloni et al. (2012), which provides an alternative way to estimate without rescaling
independent variables, additionally offering a number of benefits when conducting
inference.

The value of λ in the Lasso is a tuning parameter, and as such must be determined.
This is generally conducted by k­fold CV, as discussed in section 6.1.3. In this case,
the cross­validated mean squared error can be generated across a large range of differ­
ent potential tuning parameters for λ, and the tuning parameter can be chosen which
minimizes this MSE. Asymptotic consistency of the Lasso where λ has been chosen
based on CV has been shown by Chetverikov et al. (2021), justifying this method of
selecting λ.

Ridge Regression

The Ridge regression pre­dates the Lasso, and is based on a very similar logic. In
the case of the Ridge regression, instead of using an ℓ1 norm for the regularization pa­
rameter, an ℓ2 norm is used. Thus, the estimation procedure can be written analogously
to 6.3 as:

argmin
β

N
ÿ

i=1

(Yi ´ X 1
iβ)

2 subject to
p

ÿ

j=1

β2
j ď t (6.5)

or in Lagrangian form as:

argmin
β

#

N
ÿ

i=1

(Yi ´ X 1
iβ)

2 + λ
p

ÿ

j=1

β2
j

+

. (6.6)
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Many of the details which hold for the Lasso also hold for the Ridge regression, in­
cluding the use of standardized input variables, and λ as a tuning parameter which can
be chosen by cross validation. Unlike the Lasso, given its use of the ℓ2 norm, the Ridge
has a closed form solution for β. By differentiating 6.5 we can see:

pβridge = (X 1X + λI)´1X 1y.

The addition of a positive term λ to the principal diagonal of X 1X is why the Ridge
offers a solution when k ą N , as this makes the matrix invertible even if X 1X is not
full rank.

One fundamental difference between Ridge regression and the Lasso is the na­
ture of shrinkage in the estimated parameters. The Ridge, where regularization is
based upon the same quadratic loss as that used to minimize squared errors effec­
tively shrinks all parameters towards zero by a constant. The Lasso, on the other hand
based on a linear regularization, acts to subtract a constant factor off each parameter
truncating at zero. This implies that the Lasso both shrinks parameters, and sets po­
tentially many coefficients equal to precisely zero, while the Ridge regression simply
shrinks parameters towards zero, never setting them exactly equal to zero (unless their
OLS counterpart is indeed zero). A visualization of how estimated parameters vary
as the tuning parameter λ is increased is presented in Figure 6.1. In these figures, es­
timates are defined off precisely the same (simulated) data, and we can observe the
greater (linear) rate of shrinkage in the Lasso compared with slower shrinkage in the
Ridge, with parameters never set exactly equal to zero. Considerably more discussion
of the selection of tuning parameters, and how this varies between the Lasso, Ridge,
and other regularized regression models is provided in Abadie and Kasy (2019).

Figure 6.1: Shrinkage in the Lasso and Ridge Regression
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Elastic Nets

While both the Lasso and the Ridge regression offer benefits, an alternative which
seeks to draw positive elements from both procedures is the elastic net. The elastic net
is a hybrid model, which combines the ridge and Lasso penalty, in the following way:

argmin
β

#

N
ÿ

i=1

(Yi ´ X 1
iβ)

2 +
p

ÿ

j=1

(α|βj| + (1 ´ α)β2
j )

+

. (6.7)

If α = 0, the elastic net collapses to the Lasso, whereas if α = 1, if collapses to the
Ridge regression. Intermediate values of α, draw from both the Lasso penalty and the
Ridge penalty. This offers benefits given that where correlated variables are included in
the model, the Lasso is relatively indifferent to the variable chosen, whereas the Ridge
generally shrinks the coefficients of correlated variables toward each other (Hastie
et al., 2017, p. 662).

Subset Selection

There are other regularized regression models, which fall under the class of subset
selection models. These models simply seek to include a subset of variables in the final
regression model, eliminating all other variables. This subset is based on a specific
subset size, k, which defines the number of variables to be included, and some criteria
which is used to define how the best group of variables should be chosen. For example,
“best­subset selection” for a subset of size k chooses the k variables which minimize
the residual sum of squares in the regression model. In general, one draw back of
subset selection models, which makes Lasso or Ridge a potentially more attractive
option for estimating is that the computational implementation of subset selection is
more demanding, whereas Lasso and Ridge have efficient algorithms for estimation.

6.2.2 Regression Trees and Forests

Regression Trees

A regression tree is a procedure in which heterogeneity in data is uncovered by
partitioning the sample based on a specific criteria. It is a particularly non­parametric
style of analysis, based upon successive binary splits of the data in awaywhich seeks to
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explain the data in the best way possible. Regression trees (or CART, for classification
and regression trees) are composed of a series of branches, which successively partition
the data into most alike groups. These branches are generated from binary splits of
the data, based on potentially many underlying variables. The general nomenclature
of regression trees refers to subsamples, or data splits, as “branches”, and terminal
branches as “leaves”. Here, nodes refers to the points at which a branch splits into
other branches.

Specifically, consider an indepdendent (response) variable yi, andK dependent or
input variables xi1, . . . , xiK . The goal of a regression tree is to divide the data into
M mutually exclusive regions, denoted R1, . . . , RM , where within each region the
dependent variable is simply modelled as a constant cm. Thus, if we know the split
points, the predicted outcome can be written as:

py =
M
ÿ

m=1

cm ¨ 1tx P Rmu

An important question then is how to determine these splits, or nodes, in the data.
As splits are binary, each node in the tree is based on a single variable. Thus, it may be
the case that in a specific example, some variable x1 is used to partition data at the first
node, splitting at above and below a certain cut­point, but this need not imply that the
same variable is used to split data at the second node. The criteria used to determine
the nodes in regression trees is, fortunately, a criteria we know well: ordinary least
squares. But here, OLS is conducted progressively at each node of the tree, giving rise
to multiple branches which grow at each stage. Indeed, the process of estimation in
a regression tree is termed ‘growing’ a regression tree, and this is later refined via a
process known as pruning. Consider the decision at a specific node, where we seek to
split the data in two segments, estimating mean outcomes in each, while minimizing
the residual sum of squares. We wish to choose the variable xj among all possible
options x1, . . . , xK and split point s, such that the grouping provides a deterministic
classification: R1 = 1txj ă su andR2 = 1txj ě su. Specifically then, the regression
tree algorithm considers all possible variable and all possible cut­points, minimizing
the following quantity with the split at each node:

min
j,s

min
c1

ÿ

xiPR1(j,s)

(yi ´ c1)
2 +min

c2

ÿ

xiPR2(j,s)

(yi ´ c2)
2

 . (6.8)

This is conducted sequentially, first creating a one split leading to two branches, and
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then in each branch, creating another split, leading to another two branches. At each
stage, the equation 6.8 is solved, providing a simple binary split of the remaining data.

Figure 6.2: A Regression Tree with Two Dependent Variables
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(a) Nodes and Leaves
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(d) (x1, x2, y)
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(e) Predictions from Fitted CART

To illustrate this method we can consider a quite simple example based on two
indepdendent variables (or features), and a dependent variable (response) y. In Figure
6.2 we lay out what a regression tree would do with a specific set or simulated data.1

1This data is simulated quite simply, as 500 draws of a DGP with both x1 and x2 consisting of
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In panel (a) the regression tree is displayed. This regression tree has three levels, and
at each level the split is conducted which minimizes the quadratic loss between the
outcome y and the means in each of the groups. For example, at the top level (or the
‘root’ of the tree), the optimal split is found such that x2 ă 0.541, with observations
below this point having an estimated mean of ŷ = 13.116, and observations above
this point having an estimated mean of ŷ = 28.381. Similar such optimal splits are
conducted to each of these groups, and to each of the resulting grops, resulting in a tress
with 8 leaves. The data on the features x1 and x2 is documented in panel (b), with the
optimal partitions of the data being graphed in panel (c). Here it is apparent that at
different levels, splits can occur optimally basde on different variables. For example,
at both the root and the first branch, optimal splits are observed to be generated by
partitioning over x2 (resulting in three horizontal lines in panel (b)). Thereafter, all
optimal splits occur partitioning on x1, resulting in 4 vertical lines. Finally the bottom
panels document both the full set of tuples (x1, x2, y), as panel (d) and the predictions
generated from the model for all possible pairs of x1 and x2, giving the surface plot in
panel (e) which can be described by the tuple (x1, x2, ŷ). Note that given that within
each partition Rm, outcomes are simply modelled as cm, this gives rise to a step­like
surface.

A tuning parameter in regression trees is the complexity of themodel, with “deeper”
trees consisting of more branches and leaves. As we wish to avoid over­fitting, this
tree depth can be calculated by including a penalty term in a loss function that we seek
to minimize, which increases the cost of adding additional branches to the tree. The
process of estimation then consists of growing a regression tree based on some rela­
tively large number of nodes, and then pruning the tree back by progressively removing
branches which add little to the explanatory power of the tree, until some optimal tree
size is determined. This optimal size can be determined by cross validation. If de­
sired, formal discussions of this algorithm can be found in Hastie et al. (2017, §9.2.3)
or Hansen (2022, §29.15). Note that this process of growing the tree to a large size
and then pruning the tree back may seem unneccesarily costly, as the tree could just
be grown to a smaller level and stopped originally, but it is important. This is because
splits which seem to add relatively little to the explanatory power of a regression tree
at a high level, may lead to splits lower in the tree which turn out to be very important.

random draws of a uniform variable in the unit interval, with no correlation between the variables, and
y = 10x1 + 30x2 + 0.5x1x2 + ε, where ε is a mean zero normally distributed variable with standard
deviation of 10.
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Random Forests

Random forests, as their name suggests, are based on multiple estimations of re­
gression trees. As laid out above, and as is particularly clear in the case of Figure
6.3(e), the use of regression trees leads to discontinuous jumps in predictions at points
where branches occur, which is unlikely to reflect true features of the underlying data.
The idea of random forests is that if instead of estimating a single regression tree, many
regression trees are grown, and then averages are taken over regression trees, which
results in greater smoothness in predicted outcomes.

The way which random forests grow many trees off a particular single source of
data is through the use of bootstrapping. Randombootstrap samples are generated from
the underlying data, and within each bootstrap sample, a separate tree is grown. InML,
the process of average over bootstrap samples is referred to as Bagging. However,
unlike Bagging, random forests introduce another innovation, and that is introducing
more randomness into the predictions, which reduces the correlation between multiple
regression trees, generating smoother predictions, and improving the predictive power
of the algorithm.

This additional randomness is introduced in random forests by–within each node
of each tree–selecting at random only certain variables from among all possible ex­
planatory variables to consider for generating sample splits. This process ensures that
quite varying regression trees are produced, and a final prediction can be generated
from the total ensemble of all trees produced, as the simple average across regression
trees. A full description of the Random Forest algorithm can be found in Hastie et al.
(2017, §15.2).

6.3 Machine Learning and Causality

Here, we will begin to consider how we can use methods from machine learning to
help us in our goal of understanding (causal) treatment effects. As we will see, this will
require some way to take advantage of tools which seek to predict, while at the same
time, housing a structure for estimation of treatment effects. Some general principles,
as well as specific examples related to this, are discussed in the review paper of Belloni
et al. (2014). Below, we discuss a number of ways which this can be done, across quite
a broad array of models, relating to estimation and inference goals we have discussed
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previously in these notes.

6.3.1 Doubly Robust Estimation

An application which turns out to be highly related to the idea of selection on ob­
servables discussed in Chapter 1 is laid out by Chernozhukov et al. (2018). Their “Dou­
ble/debiased Machine Learning” procedure aims to estimate treatment effects where
the nature of observable confounders is unknown, and potentially many confounders
may be considered to be present. To understand their procedure, we will use the quite
standard notation used up to this point where Y refers to some outcome of interest,D
is the treatment variable, and X is a vector of controls of dimension p. Specifically,
they propose the following “partially linear model”:

Y = Dθ0 + g0(X) + U, E[U |X,D] = 0 (6.9)

D = m0(X) + V, E[V |X] = 0. (6.10)

We note here that while the notation may be slightly different to earlier settings, we are
interested in the parameter θ0, which is the effect of treatmentD on the outcome Y . As
we know, ifD is exogenous conditional on confoundersX , adequately controlling for
X will allow us to estimate τ0 in an unbiased manner. The assumption in equation 6.9
is precisely that E[U |X,D] = 0, which is an unconfoundedness assumption. Indeed,
if we know the collection of relevant variables X and the functional form for their
relationship with Y , we could estimate the parameter of interest θ0 very easily, as we
have discussed in Chapter 1 of these notes.

The issue here is that we are not sure of two things. Firstly, we do not know the
relationship between X and Y . We neither assume that it is linear (hence the general
function g0(¨)), nor that we know which of the variables from the potential p variables
in the vector X are relevant. Secondly, we do not know the nature of the relationship
between the potential confounding vectors X and the treatment variable of interest.
This is summarised in equation 6.10, where m0(¨) is an unknown function, both in
form and in variables. Additionally, it is not assumed that p is small relative to sample
size – indeed the dimension of p may be large relative to the full sample size N .

Note here then, that our main interest is in estimating the treatment effect pθ0, but
this requires knowing some function g0(X), which is not directly of interest, apart from
as ameans to correctly isolate pθ0, in other words, it is a series of “nuisance parameters”.
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Here the utility of ML can start to be seen even in causal settings. We can seek to use
ML to learn about this nuisance parameter, and once this is done, isolate the causal
effect of interest.

However, it is important to note that the solution is not just to learn g(X0) and
plug this into equation 6.9. For example, imagine we use some ML procedure such as
Random Forest regression to learn pg0, and we learn this in some training sample of the
data to avoid overfitting. Then, imagine we use this function in the estimation sample
of data, below indicated I , to seek to estimate the treatment effect by using an OLS
estimate, where pg0 has been residualized out of Y :

pθ0 =

(
1

N

ÿ

iPI

D2
i

)´1
1

N

ÿ

iPI

Di(Yi ´ pg0(Xi)). (6.11)

Chernozhukov et al. (2018) show that the problemwith this is that this will not generate
a consistent estimate of θ0, because there is a bias in the estimate pg0. This is, of course,
inherent in ML procedures, as we seek to use regularization to reduce variance when
making predictions (as discussed in the previous sections), but this by necessity builds
in bias. This is what Chernozhukov et al. (2018) refer to as “Regularization bias”,
which is the bias in pθ0 which owes to the process of regularization when learning the
nuisance parameters g0().

Fortunately, they note that this can be overcome relatively simply, by using an
additional learning process (hence the “Double” machine learning). This is done by
learning and partialling out the effects of relevant X from the treatment variable D.
Once again however, we do not know the true relationship between D and X , so this
can be inferred from some ML estimator. The suggestion is to obtain:

pV = D ´ pm0(x),

where pm0 is the ML estimator obtained using a “training” portion of the data. We can
then arrive to a debiased machine learning (DML) estimate using the version ofD with
X partialled out as:

qθ0 =

(
1

N

ÿ

iPI

pViDi

)´1
1

N

ÿ

iPI

pVi(Yi ´ pg0(Xi)). (6.12)

This estimator has both (approximately) removed the influence ofX fromD, and also
remove the direct effect of confounding, by subtracting pg0 from Y , which removes the
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Figure 6.3: Simulated example of Double/Debiased Machine Learning
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(b) Double ML, no splitting
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(c) Double ML, sample splitting
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(d) The success of Double ML

Notes: Simulated example of the DDML procedure follows the example available from Python’s
DoubleML package. For details, refer to the user guide at https://docs.doubleml.org/stable/
guide/basics.html.

regularization bias in equation 6.11. You might perhaps note the links between this
procedure and the Frisch­Waugh­Lovell theorem in econometrics. We know that we
can arrive to an unbiased estimate of some regression parameter on a variable X in a
model with multiple variables if we “partial out” the other variable from both Y and
X , and then regress the residuals on one another. The idea here is similar, however we
have to actually learn what the other relevant variables are using some technique from
ML.

Chernozhukov et al. (2018) show that the resulting DML estimator is approxi­
mately unbiased and normally distributed. They do make clear the importance of ap­
propriately taking into account overfitting, as if one uses the full dataset to conduct
both training and estimation, some bias can remain. For this reason, they propose us­
ing a sample splitting procedure which allows for overfitting to be avoided, and at the

https://docs.doubleml.org/stable/guide/basics.html
https://docs.doubleml.org/stable/guide/basics.html
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same time gains from using all data to conduct estimation. This procedure, which they
call “cross­fitting” consists of splitting the sample into two approximately equal sub­
samples, and using one of the samples (say “sample A”) to estimate pg0 and pm0, and the
other sample (“sample B”) to estimate qθ0. Then, this procedure can be reversed, with
sample B used to estimate the nuisance parameters, and sample A used to estimate the
qθ0. The proposed DML estimate is then just an average of the estimates from each
sample A and B.

This procedure is documented to work well in a range of settings. An example
based on the partial linear model discussed here is plotted in Figure 6.3. In panel (a),
the naive ML estimate with regularization bias is documented, while in panel (b), the
DML estimate is conducted based on the full sample (leading to a small bias due to
overfitting). In panel (c), DML is conducted with sample splitting, leading to approxi­
mately unbiased normally distributed estimates across 1000 simulations of a particular
model.

There are many further details which can be found in Chernozhukov et al. (2018).
They note that alternative procedures – based on a similar logic – can be used to es­
timate the DML estimator in equation 6.12, that a version of k­fold cross validation
can be used instead of cross­fitting, as well as discussions of how this can be used
in settings with IV. A shorter treatment of this setting, specifically focused on esti­
mating an ATT or ATE is provided in Chernozhukov et al. (2017). What’s more, the
procedure has been shown to be extendable to other circumstances, such as difference­
in­differences by Chang (2020).

In general, this idea of combining Machine Learning with treatment effect esti­
mation where a challenge is the correct selection of controls has been considered in
alternative productive ways. An earlier proposal which works in approximately sparse
settings is the post­double­selection estimator of Belloni et al. (2013). There, a quite
similar setting is considered, and a solution based upon selection of confounders using
Lasso is proposed. They consider partially linear models following equations 6.9­6.10
and propose the following “post­double selection” estimator:

1. Estimate a Lasso to select the group of variablesX which are useful for predict­
ing treatment D.

2. Estimate a Lasso to select the group of variablesX which are useful for predict­
ing outcome Y

3. Estimate the treatment effect of interest (θ0 in equation 6.9) by simple linear
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regression of Y on D and the union of controls selected in either step 1 or 2.

The show that this double selection procedure results in valid inference for the treat­
ment effect of interest, allowing for imperfect selection of controls. The reason why
valid inference can be conducted even with imperfect selection of controls is that rel­
evant variables which are omitted in one of the two steps above are likely be included
in the other step if they are truly important in the context of interest. For example, con­
sider those variables which will be omitted in step 2 above. These are variables which
have at most a small relationship with Y . If some variable has a moderate relationship
with Y , it will only generate a substantial bias in estimates of the treatment effect of
interest if it is strongly related toD. However, these are precisely the variables which
will be picked up in step 1, and hence valid inference can be recovered by including
the union of variables in steps 1 of 2. This is quite different to what would occur if a
single step procedure were implemented, where a Lasso was directly used to estimate
θ0 in 6.9, as it is unlikely that selection of g0(X)would be perfect in the Lasso, leading
to bias in estimates of θ0.

6.3.2 Matrix completion

An alternative context in whichMLmethods – and prediction more generally – can
be used productively is in panel or logitudinal data, which we considered at length in
Chapter 2. In general, in the panel datamethodswe’ve encountered, such as difference­
in­differences and synthetic control and their many extensions, the challenge has been
in inferring what would have happened to treated units had they not been treated. This
can be seen by considering the ATT which we wish we seek to estimate:

τ =

ř

i,t:Wit=1[Yi,t(1) ´ Yi,t(0)]
ř

i,t Wit

,

where we use Yi,t(1) to indicate potential outcomes when treated, and Yi,t(0) to indi­
cate the untreated counterparts. We can see that this estimator requires “imputation”,
because for units for whom Wi,t = 1, we will, by definition, observe only Yi,t(1). If
we are able to infer, or impute, Yi,t(0), we can calculate the ATT defined in τ .

The manner in which the standard estimators we’ve studied in this setting have
“imputed” outcomes varies. For example, in DD, outcomes are “imputed” by using
a parallel trends assumption: we assume that treated units would have followed the
same trends as untreated units, based on a potentially different baseline level. Or in
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the case of synthetic control, outcomes are “imputed” by observing themean of a group
of untreated units which were estimated to be similar pre­treatment periods.

However, more generally, other ways could be sought to impute Yi,t(0) for all units
i, t for which Wi,t = 1. This is a point taken up by Athey et al. (2021), who suggest
the use of Matrix completion methods. Matrix completion is a problem described in
machine learning where “missing” elements of a matrix are sought to be filled in effi­
ciently. In the example studied by Athey et al. (2021), the matrix we wish to complete
is precisely the matrix consisting of Yi,t(0), which they refer to as Y(0), or for sim­
plicity Y. As they note, this matrix may be quite variable, depending on the context
studied. Most generically, in a staggered adoption case where units adopt treatment at
different points of time, or not at all, it can be described as follows:

YNˆT =



t1 t2 t3 t4 t5 . . . tT

✓ ✓ ✓ ✓ ✓ . . . ✓ +

Never Adopters...
...

...
...

... . . . ...
✓ ✓ ✓ ✓ ✓ . . . ✓
✓ ✓ ✓ ✓ ✓ . . . ? +

Late Adopters...
...

...
...

... . . . ...
✓ ✓ ✓ ✓ ✓ . . . ?

✓ ✓ ✓ ? ? . . . ? +

Medium Adopters...
...

...
...

... . . . ...
✓ ✓ ✓ ? ? . . . ?

✓ ? ? ? ? . . . ? +

Early Adopters...
...

...
...

... . . . ...
✓ ? ? ? ? . . . ?


Here, cells marked with a check are observed values, while cells marked with a ques­
tion mark are not observed, given that units are treated in these periods. Thus, if we
could complete these cells indicated with a question mark – in effect predicting the
unobserved counterfactual – we could compare them with actually observed outcomes
when these units are treated, and calculate the ATT of interest.

Athey et al. (2021) note that the challenge then is in completing the data matrix Y,
which they model as:

Y = L˚ + ε. (6.13)

where it is assumed that E[ε|L˚] = 0. Here, ε can be viewed as measurement error,
and what we wish to do is determine the best prediction for L˚ based on the available
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information to us. It is worth nothing that while this set­up may feel non­standard, it is
what we are implicitly doing in other DD style estimators, just (implicitly) using quite
simple models for L˚.

Athey et al. (2021) then propose a more flexible model forL˚, where this can more
optimally use information from the available observed untreated units. They propose
to estimate L˚ as:

L˚ = pL+ pΓ + p∆

where pΓ is simply a matrix consisting of each relevant unit fixed effect, and p∆ is
a matrix consisting of each relevant time­fixed effect.2 The matrix pL lets us infer
information from potentially other units and time­periods which allow us to make a
better predicted counterfactual outcome. This is where quite clear links to ML come
in, as we need to choose this matrix pL to minimise some loss function, though do
not want to fall into a trap of overfitting by drawing in information from many other
control units and time periods. In particular, what Athey et al. (2021) suggest is to
use the data which are observed for Y to make the best possible prediction for Y by
minimising the following loss function:

(pL, pΓ, p∆) = argmin
L,Γ,∆

"

1

NWi,t=0

||Y ´ L ´ Γ ´ ∆||2F + λ||L||˚

*

. (6.14)

Here, NWi,t=0 refers simply to the number of observations for which Y is observed
(ie the number of observations for which Wi,t = 0). The equation 6.14 provides the
estimator which can be used to construct L˚. Note here that the selection of L˚ is
regularized, much as we saw with the Lasso in section 6.2. Also note that the fixed
effect terms do not enter this regularization. In effect then, we always use time and
unit fixed effects from un­treated units to calculate Y , but also potentially information
from other untreated units in periods in which a specific unit is treated to infer its
untreated potential outcome. The terms || ¨ ||F and || ¨ ||˚ in equation 6.14 are the
Fröbenius norm and the Nuclear norm respectively (refer to Athey et al. (2021, Table
1) for full details). The use of the Nuclear norm in the regularization term turns out
to be important because it is computationally tractable, while also working well in
cases where there is missing information to impute (unlike some other candidate norms
considered). Finally, note that λ can be calculated using cross­validation, choosing the
value of λ which minimises mean squared error.

2I am using a slightly pared­back notation in these notes of what Athey et al. (2021) present in their
paper. Athey et al. (2021) have a more rigourous treatment, however I am seeking to condense it here
to the most basic set­up, without losing key details. If you wish to see the full details, refer to Athey
et al. (2021, §4).
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Athey et al. (2021) note a considerable number of extensions to these methods
including cases where covariates are included, where weighting is desired, as well as
discussing some basic points on inference with resampling. They also provide a code
implementation in R at https://github.com/susanathey/MCPanel. They show
that these methods outperform DD and synthetic controls, and generally outperform
alternative ML­based models to generate counterfactual predictions in this setting, and
this is particularly the case in staggered adoption designs in relative short panels. In a
shorter paper, they suggest that while these methods generally outperform alternatives,
they can be further improved upon when combined (Athey et al., 2019), which is the
idea behind a range of “Ensemble” methods in ML.

6.3.3 Treatment Effect Heterogeneity

In the previously considered examples, we have seen how we can combine ML
techniques and principles to the types of contexts we have studied before in these
lectures to assist us in finding average treatment effects. But this can also be used
more generally, to seek to understand the underlying heterogeneity in these treatment
effects. This has been taken forward, where the heterogeneity can be “learned” with
tools we have begun to discuss above.

Athey and Imbens (2016) provide a discussion of this, which begins with the Con­
ditional Average Treatment Effect (CATE). The CATE is defined as:

τ(x) ” E[Yi(1) ´ Yi(0)|Xi = x], (6.15)

where the potential outcomes are defined as we know (Chapter 1), and the “condi­
tional” thus refers to conditioning on some variable Xi. In this paper, Athey and
Imbens (2016) make a conditional unconfoundedness assumption (unconfoundedness
conditional onXi), and note that the interest is in seeking to find estimators which are
based on partitions of X , but do not vary within partitions. You may note that this is
similar to what a regression tree seeks to do, but here rather than seeking to predict py

in leaves of the tree, the goal is to actually estimate a treatment effect.

This leads to what Athey and Imbens (2016) refer to as “causal tree” (CT) esti­
mates. While this is broadly related to regression trees (CART) as laid out in section
6.2.2, a number of substantive tweaks are required. A first tweak owes to the fact that
the objective in each leaf is to estimate a treatment effect, rather than a simple average
across all observations Yi. For this reason, given that individual level treatment ef­

https://github.com/susanathey/MCPanel
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fects (τi) can never be observed, unlike individual level outcomes Yi, the loss function
considered to build the tree needs to be altered. Athey and Imbens (2016) propose an
alternative criteria for assessing trees: the expected mean squared error for treatment
effects. The second tweak is used to ensure that inference on estimated parameters can
be conducted appropriately, and this is to use what they refer to as “honest” estimation.
The process of honest estimation consists of splitting the data in two equal parts. The
first part is used as a training set of data to generate the partition of the tree based on
treatment effect heterogeneity, and then the actual estimate of treatment effects based
on this partition will be conducted with a the remaining half of the data.

Considerable further detail is available in Athey and Imbens (2016), including a
discussion related to cross validation and model comparison, and performance under
simulation. These methods have been expanded, along the lines of random forests, by
Athey and Wager (2018) who propose the use if causal forests, leading to a smoother
function τ(x). Athey and Wager (2018) additionally demonstrate asymptotic normal­
ity of these causal forest estimators, implying that both estimation and inference can
be conducted.

6.4 ‹ Text Analysis

UNDER CONSTRUCTION. Refer to the excellent overview in Gentzkow et al.
(2019).
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CRVE, see Cluster­robust inference

DebiasedMachine Learning, seeDouble/Debiased
Machine Learning

Double/Debiased Machine Learning, 168

Elastic net, 163

Heterogeneity, 11

Lasso, 160
Least absolute shrinkage and selection op­

erator, see Lasso

Matrix completion, 173

Potential Outcomes, 7, 8
Pre­analysis plan, 132

Random forests, 167, 176
Regression Tree, 163
Ridge regression, 161
Rubin Causal Model, 7

Stable Unit Treatment Value Assumption,
see SUTVA

SUTVA, 13

Treatment effects, 10
ATE, 11
ATT, 11

CATT, 60

Unconfoundedness, 14
Unconditional unconfoundedness, 14
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